Ashna Ghanbari, Jordyn Vienneau, Sandro R Nigg, Benno M Nigg
{"title":"Effects of selected features of advanced footwear technology on lower limb joint work.","authors":"Ashna Ghanbari, Jordyn Vienneau, Sandro R Nigg, Benno M Nigg","doi":"10.1080/14763141.2025.2508244","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study was to isolate the effects of two key components of Advanced Footwear Technology, the curved carbon fibre plate and the midsole material, on lower-limb joint work. Sixteen male recreational runners ran overground at a speed of 3.9 (±5%) metres per second in three shoe conditions: a standard Nike Vaporfly 4% (Original VP4), a modified version without the curved carbon fibre plate (No Plate) and a version with the PEBA midsole material replaced with EVA foam (EVA). Motion capture and force platform data were recorded to determine positive and negative metatarsophalangeal, ankle, knee, and hip joint work, and positive and negative foot + footwear work across the different conditions. Removing the carbon fibre plate significantly increased negative work at the metatarsophalangeal joint and positive work at the ankle. Replacing PEBA with EVA significantly reduced positive foot + footwear work. The findings of this study highlighted a group effect of the curved carbon fibre plate, which redistributed positive lower-limb joint work from the ankle to the metatarsophalangeal joint. Conversely, the results highlighted subject-specific differences in response to the midsole material, emphasising the importance of considering individual variability in footwear design elements to optimise athletic performance.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-15"},"PeriodicalIF":2.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2025.2508244","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study was to isolate the effects of two key components of Advanced Footwear Technology, the curved carbon fibre plate and the midsole material, on lower-limb joint work. Sixteen male recreational runners ran overground at a speed of 3.9 (±5%) metres per second in three shoe conditions: a standard Nike Vaporfly 4% (Original VP4), a modified version without the curved carbon fibre plate (No Plate) and a version with the PEBA midsole material replaced with EVA foam (EVA). Motion capture and force platform data were recorded to determine positive and negative metatarsophalangeal, ankle, knee, and hip joint work, and positive and negative foot + footwear work across the different conditions. Removing the carbon fibre plate significantly increased negative work at the metatarsophalangeal joint and positive work at the ankle. Replacing PEBA with EVA significantly reduced positive foot + footwear work. The findings of this study highlighted a group effect of the curved carbon fibre plate, which redistributed positive lower-limb joint work from the ankle to the metatarsophalangeal joint. Conversely, the results highlighted subject-specific differences in response to the midsole material, emphasising the importance of considering individual variability in footwear design elements to optimise athletic performance.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.