N Stewart Pritchard, Kambrie M Brandt, Alexandra G Peluso, David W Kruse, Elspeth Hart, Heather P Carr, Garrett S Bullock, Christopher M Miles, Justin B Moore, Joel D Stitzel, Jillian E Urban
{"title":"Evaluation of head kinematics experienced during common skill progression pathways in Women's Artistic Gymnastics.","authors":"N Stewart Pritchard, Kambrie M Brandt, Alexandra G Peluso, David W Kruse, Elspeth Hart, Heather P Carr, Garrett S Bullock, Christopher M Miles, Justin B Moore, Joel D Stitzel, Jillian E Urban","doi":"10.1080/14763141.2025.2481154","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to evaluate head kinematics experienced during skill progression pathways in Women's Artistic Gymnastics to inform post-concussion return to gymnastics protocols. A return to gymnastics framework, consisting of seven skill progression pathways, was developed. Twelve gymnasts were instrumented with mouthpiece sensors and performed two trials of each skill, if able. Sensors recorded data at 100 Hz and skill segments were extracted using time-synchronised video. Peak resultant linear (PLA) and rotational acceleration (PRA), rotational velocity change index (ΔRV) and peak resultant rotational velocity (PRV) of 1 Hz low pass filtered data were computed from skills. A mixed effects model evaluated differences in kinematic metrics across skills within pathways while adjusting for random effects of the participant. Stepwise increases in kinematic metrics occurred along backward and forward tumbling (floor) pathways but did not occur in other pathways. For instance, gymnasts experienced greater PLA and PRV during clear hip and back hip circle compared to giant. Moreover, skills performed early along respective pathways (e.g, Yurchenko timer (to back), Tsukahara timer (to back), handstand forward roll) were among the skills with the greatest PRA and ΔRV. Head kinematics associated with skill performance should be considered when developing return to gymnastics protocols.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-21"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2025.2481154","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to evaluate head kinematics experienced during skill progression pathways in Women's Artistic Gymnastics to inform post-concussion return to gymnastics protocols. A return to gymnastics framework, consisting of seven skill progression pathways, was developed. Twelve gymnasts were instrumented with mouthpiece sensors and performed two trials of each skill, if able. Sensors recorded data at 100 Hz and skill segments were extracted using time-synchronised video. Peak resultant linear (PLA) and rotational acceleration (PRA), rotational velocity change index (ΔRV) and peak resultant rotational velocity (PRV) of 1 Hz low pass filtered data were computed from skills. A mixed effects model evaluated differences in kinematic metrics across skills within pathways while adjusting for random effects of the participant. Stepwise increases in kinematic metrics occurred along backward and forward tumbling (floor) pathways but did not occur in other pathways. For instance, gymnasts experienced greater PLA and PRV during clear hip and back hip circle compared to giant. Moreover, skills performed early along respective pathways (e.g, Yurchenko timer (to back), Tsukahara timer (to back), handstand forward roll) were among the skills with the greatest PRA and ΔRV. Head kinematics associated with skill performance should be considered when developing return to gymnastics protocols.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.