评价在女子艺术体操常见的技术进步路径中头部的运动学经验。

IF 2 3区 医学 Q3 ENGINEERING, BIOMEDICAL
N Stewart Pritchard, Kambrie M Brandt, Alexandra G Peluso, David W Kruse, Elspeth Hart, Heather P Carr, Garrett S Bullock, Christopher M Miles, Justin B Moore, Joel D Stitzel, Jillian E Urban
{"title":"评价在女子艺术体操常见的技术进步路径中头部的运动学经验。","authors":"N Stewart Pritchard, Kambrie M Brandt, Alexandra G Peluso, David W Kruse, Elspeth Hart, Heather P Carr, Garrett S Bullock, Christopher M Miles, Justin B Moore, Joel D Stitzel, Jillian E Urban","doi":"10.1080/14763141.2025.2481154","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to evaluate head kinematics experienced during skill progression pathways in Women's Artistic Gymnastics to inform post-concussion return to gymnastics protocols. A return to gymnastics framework, consisting of seven skill progression pathways, was developed. Twelve gymnasts were instrumented with mouthpiece sensors and performed two trials of each skill, if able. Sensors recorded data at 100 Hz and skill segments were extracted using time-synchronised video. Peak resultant linear (PLA) and rotational acceleration (PRA), rotational velocity change index (ΔRV) and peak resultant rotational velocity (PRV) of 1 Hz low pass filtered data were computed from skills. A mixed effects model evaluated differences in kinematic metrics across skills within pathways while adjusting for random effects of the participant. Stepwise increases in kinematic metrics occurred along backward and forward tumbling (floor) pathways but did not occur in other pathways. For instance, gymnasts experienced greater PLA and PRV during clear hip and back hip circle compared to giant. Moreover, skills performed early along respective pathways (e.g, Yurchenko timer (to back), Tsukahara timer (to back), handstand forward roll) were among the skills with the greatest PRA and ΔRV. Head kinematics associated with skill performance should be considered when developing return to gymnastics protocols.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-21"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of head kinematics experienced during common skill progression pathways in Women's Artistic Gymnastics.\",\"authors\":\"N Stewart Pritchard, Kambrie M Brandt, Alexandra G Peluso, David W Kruse, Elspeth Hart, Heather P Carr, Garrett S Bullock, Christopher M Miles, Justin B Moore, Joel D Stitzel, Jillian E Urban\",\"doi\":\"10.1080/14763141.2025.2481154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to evaluate head kinematics experienced during skill progression pathways in Women's Artistic Gymnastics to inform post-concussion return to gymnastics protocols. A return to gymnastics framework, consisting of seven skill progression pathways, was developed. Twelve gymnasts were instrumented with mouthpiece sensors and performed two trials of each skill, if able. Sensors recorded data at 100 Hz and skill segments were extracted using time-synchronised video. Peak resultant linear (PLA) and rotational acceleration (PRA), rotational velocity change index (ΔRV) and peak resultant rotational velocity (PRV) of 1 Hz low pass filtered data were computed from skills. A mixed effects model evaluated differences in kinematic metrics across skills within pathways while adjusting for random effects of the participant. Stepwise increases in kinematic metrics occurred along backward and forward tumbling (floor) pathways but did not occur in other pathways. For instance, gymnasts experienced greater PLA and PRV during clear hip and back hip circle compared to giant. Moreover, skills performed early along respective pathways (e.g, Yurchenko timer (to back), Tsukahara timer (to back), handstand forward roll) were among the skills with the greatest PRA and ΔRV. Head kinematics associated with skill performance should be considered when developing return to gymnastics protocols.</p>\",\"PeriodicalId\":49482,\"journal\":{\"name\":\"Sports Biomechanics\",\"volume\":\" \",\"pages\":\"1-21\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sports Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14763141.2025.2481154\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2025.2481154","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在评估女子艺术体操在技能进步过程中所经历的头部运动学,为脑震荡后重返体操方案提供信息。一个回归体操的框架,包括七个技能发展路径,被开发。12名体操运动员戴上了口腔传感器,如果可能的话,对每种技能进行两次试验。传感器以100赫兹记录数据,并使用时间同步视频提取技能片段。通过技能计算1 Hz低通滤波数据的峰值合成线性(PLA)和旋转加速度(PRA)、转速变化指数(ΔRV)和峰值合成转速(PRV)。混合效应模型评估了不同技能的运动指标的差异,同时调整了参与者的随机效应。运动学指标的逐步增加发生在向后和向前翻滚(地板)路径,但不发生在其他路径。例如,与巨人相比,体操运动员在清晰的髋关节和后髋关节圈中经历了更大的PLA和PRV。此外,沿着各自的路径(例如,尤尔琴科计时器(向后),冢原计时器(向后),倒立前滚)早期执行的技能是PRA和ΔRV最大的技能之一。在制定重返体操方案时,应考虑与技能表现相关的头部运动学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of head kinematics experienced during common skill progression pathways in Women's Artistic Gymnastics.

This study aimed to evaluate head kinematics experienced during skill progression pathways in Women's Artistic Gymnastics to inform post-concussion return to gymnastics protocols. A return to gymnastics framework, consisting of seven skill progression pathways, was developed. Twelve gymnasts were instrumented with mouthpiece sensors and performed two trials of each skill, if able. Sensors recorded data at 100 Hz and skill segments were extracted using time-synchronised video. Peak resultant linear (PLA) and rotational acceleration (PRA), rotational velocity change index (ΔRV) and peak resultant rotational velocity (PRV) of 1 Hz low pass filtered data were computed from skills. A mixed effects model evaluated differences in kinematic metrics across skills within pathways while adjusting for random effects of the participant. Stepwise increases in kinematic metrics occurred along backward and forward tumbling (floor) pathways but did not occur in other pathways. For instance, gymnasts experienced greater PLA and PRV during clear hip and back hip circle compared to giant. Moreover, skills performed early along respective pathways (e.g, Yurchenko timer (to back), Tsukahara timer (to back), handstand forward roll) were among the skills with the greatest PRA and ΔRV. Head kinematics associated with skill performance should be considered when developing return to gymnastics protocols.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sports Biomechanics
Sports Biomechanics 医学-工程:生物医学
CiteScore
5.70
自引率
9.10%
发文量
135
审稿时长
>12 weeks
期刊介绍: Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic). Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly. Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信