Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences最新文献

筛选
英文 中文
Assessing the molecular interaction between a COVID-19 drug, nirmatrelvir, and human serum albumin: calorimetric, spectroscopic, and microscopic investigations. 评估COVID-19药物尼马特利韦与人血清白蛋白之间的分子相互作用:量热法、光谱和显微镜研究
IF 1.8 4区 生物学
Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences Pub Date : 2025-02-10 DOI: 10.1515/znc-2024-0223
Mujaheed Abubakar, Ahmad Fadhlurrahman Ahmad Hidayat, Adyani Azizah Abd Halim, Kushagra Khanna, Mohammed Suleiman Zaroog, Mogana Sundari Rajagopal, Saad Tayyab
{"title":"Assessing the molecular interaction between a COVID-19 drug, nirmatrelvir, and human serum albumin: calorimetric, spectroscopic, and microscopic investigations.","authors":"Mujaheed Abubakar, Ahmad Fadhlurrahman Ahmad Hidayat, Adyani Azizah Abd Halim, Kushagra Khanna, Mohammed Suleiman Zaroog, Mogana Sundari Rajagopal, Saad Tayyab","doi":"10.1515/znc-2024-0223","DOIUrl":"https://doi.org/10.1515/znc-2024-0223","url":null,"abstract":"<p><p>The research examined the molecular interaction between nirmatrelvir (NIR), a drug used to treat COVID-19, and human serum albumin (HSA) using various techniques, <i>viz.</i>, isothermal titration calorimetry (ITC), absorption, fluorescence, CD spectroscopy, and atomic force microscopy (AFM). ITC analysis showed that the NIR-HSA system possessed a moderate binding affinity, with a <i>K</i> <sub><i>a</i></sub> value of 6.53 ± 0.23 × 10<sup>4</sup> M<sup>-1</sup> at a temperature of 300 K. The thermodynamic values demonstrated that the NIR-HSA complex was stabilized by hydrophobic contacts, hydrogen bonds, and van der Waals forces. The research also discovered modifications in the UV-Vis absorption spectrum of the protein as well as swelling of the HSA molecule when exposed to NIR, based on AFM results. The three-dimensional fluorescence spectral data indicated changes in the microenvironment around HSA's Trp and Tyr residues. Alterations in the protein structure (both secondary and tertiary structures) of HSA after NIR binding were verified using CD spectral studies in the far-UV and near-UV regions. The identification of the NIR binding site in subdomain IB (Site III) of HSA was predicted through competitive displacement experiments.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insight into in vitro thymidine phosphorylase and in silico molecular docking studies: identification of hybrid thiazole bearing Schiff base derivatives. 体外胸苷磷酸化酶和硅分子对接研究的深入研究:杂化噻唑类席夫碱衍生物的鉴定。
IF 1.8 4区 生物学
Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences Pub Date : 2025-02-06 DOI: 10.1515/znc-2024-0214
Sundas Mumtaz, Fazal Rahim, Rafaqat Hussain, Shoaib Khan, Obaid Ur Rahman Abid, Asma Sardar, Tayyiaba Iqbal, Mohammad Shahidul Islam, Tahani Mazyad Almutairi
{"title":"Insight into <i>in vitro</i> thymidine phosphorylase and <i>in silico</i> molecular docking studies: identification of hybrid thiazole bearing Schiff base derivatives.","authors":"Sundas Mumtaz, Fazal Rahim, Rafaqat Hussain, Shoaib Khan, Obaid Ur Rahman Abid, Asma Sardar, Tayyiaba Iqbal, Mohammad Shahidul Islam, Tahani Mazyad Almutairi","doi":"10.1515/znc-2024-0214","DOIUrl":"https://doi.org/10.1515/znc-2024-0214","url":null,"abstract":"<p><p>In pursuit of effective thymidine phosphorylase inhibitors, a series of hybrid analogs of thiazole-hydrazone derivatives (1-15) were synthesized and evaluated for their enzyme inhibitory potential using 7-deazaxanthine as a positive control. The goal was to determine these derivatives' effectiveness in suppressing thymidine phosphorylase activity, a target relevant to antitumor strategies due to the enzyme's role in angiogenesis and tumor growth. Biological evaluations indicated that all synthesized analogs displayed significant to moderate inhibitory activity, with IC<sub>50</sub> values between 3.93 ± 0.90 and 25.75 ± 4.30 µM. Particularly, compounds 12, 9, and 28 exhibited superior potency, with IC<sub>50</sub> values of 3.93 ± 0.90, 4.10 ± 1.10, and 4.50 ± 1.10 µM, respectively, surpassing the standard inhibitor 7-deazaxanthine (IC<sub>50</sub> = 16.8 ± 2.20 µM). Additionally, molecular docking studies were performed to elucidate the binding interactions of the synthesized thiazole-hydrazone derivatives with the active site of thymidine phosphorylase. The docking results aligned well with experimental data, revealing favorable binding conformations and significant interactions that support the observed inhibitory activities, particularly in the most potent compounds. These findings underscore the promise of thiazole-hydrazone derivatives as effective thymidine phosphorylase inhibitors, suggesting that targeted structural modifications could further enhance their activity. Further investigations, including <i>in vivo</i> studies, are warranted to explore their potential applications in anticancer therapies. This study highlights the valuable role of molecular docking in understanding the structure-activity relationship (SAR) of thiazole-hydrazone derivatives, emphasizing the potential of these compounds in advancing thymidine phosphorylase inhibition strategies for therapeutic purposes.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143256473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Essential oil composition, in vitro antidiabetic, cytotoxicity, antimicrobial, antioxidant activity, and in silico molecular modeling analysis of secondary metabolites from Justicia schimperiana. 金凤花精油成分、体外抗糖尿病、细胞毒性、抗菌、抗氧化活性及次生代谢产物的硅分子模拟分析。
IF 1.8 4区 生物学
Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences Pub Date : 2025-01-28 DOI: 10.1515/znc-2024-0124
Getachew Tegegn, Yadessa Melaku, Muhdin Aliye, Abiy Abebe, Sileshi Degu, Rajalakshmanan Eswaramoorthy, Mo Hunsen, Milkyas Endale
{"title":"Essential oil composition, <i>in vitro</i> antidiabetic, cytotoxicity, antimicrobial, antioxidant activity, and <i>in silico</i> molecular modeling analysis of secondary metabolites from <i>Justicia schimperiana</i>.","authors":"Getachew Tegegn, Yadessa Melaku, Muhdin Aliye, Abiy Abebe, Sileshi Degu, Rajalakshmanan Eswaramoorthy, Mo Hunsen, Milkyas Endale","doi":"10.1515/znc-2024-0124","DOIUrl":"https://doi.org/10.1515/znc-2024-0124","url":null,"abstract":"<p><p><i>Justicia schimperiana</i>, known as \"Dhumuugaa\" in Afan Oromo and \"Sensel\" or \"Smiza\" in Amharic, is traditionally used to treat ailments such as scabies, fever, asthma, diarrhea, malaria, and more. This study explored the chemical composition and biological activity of its extracts and isolated compounds. The essential oils were extracted using the hydrodistillation method, and their chemical composition was evaluated using GC-MS. GC-MS analysis identified 54 and 52 chemical components in the essential oils (EOs) from roots and leaves, respectively. The structures of the isolated compounds have been identified using 1D and 2D-NMR techniques. Six compounds - β-sitosterol (<b>1</b>), 5-methoxy durmillone (<b>2</b>), <i>trans</i>-resveratrol (<b>3</b>), tricuspidatol A (<b>4</b>), kaempferol-3-O-α-rhamnopyranoside (<b>5</b>), and kaempferol-3-O-rutinoside (<b>6</b>) - were isolated from the root extracts and reported for the first time in this species. The antimicrobial activity was evaluated using the broth microdilution technique. EOs extracts showed significant antibacterial activity, particularly against <i>Staphylococcus aureus</i>, <i>Streptococcus agalactiae</i>, while compound <b>6</b> showed potent activity with an MIC of 0.25 μg/mL. The antioxidant activity revealed strong radical scavenging for compounds <b>5</b> and <b>6</b>, with extracts also demonstrating significant α-amylase inhibitory effects and moderate cytotoxicity against the MCF-7 cell line. Molecular docking and ADMET analysis highlighted compounds <b>5</b> and <b>6</b> as promising therapeutic agent. These findings highlight the medicinal potential of <i>J. schimperiana</i> roots, warranting further exploration.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
French marigold (Tagetes patula) flavonoid extract-based priming ameliorates initial drought stress on Oryza sativa var indica, cultivar Satabdi (IET4786): a sustainable approach to avoid initial drought stress. 以法国万寿菊(Tagetes patula)黄酮类提取物为基础的引物可改善 Oryza sativa var indica, 栽培品种 Satabdi (IET4786)的初始干旱胁迫:避免初始干旱胁迫的可持续方法。
IF 1.8 4区 生物学
Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences Pub Date : 2025-01-14 DOI: 10.1515/znc-2024-0093
Arunima Saha, Suraj Kumar, Sanjukta Dey, Chiranjib Bhattacharyya, Ranabir Sahu, Gouhar Jahan Ashraf, Somnath Bhattacharyya, Pritam Das, Subhendu Bandyopadhyay, Saikat Dewanjee, Moumita Gangopadhyay
{"title":"French marigold (<i>Tagetes patula</i>) flavonoid extract-based priming ameliorates initial drought stress on <i>Oryza sativa</i> var <i>indica</i>, cultivar Satabdi (IET4786): a sustainable approach to avoid initial drought stress.","authors":"Arunima Saha, Suraj Kumar, Sanjukta Dey, Chiranjib Bhattacharyya, Ranabir Sahu, Gouhar Jahan Ashraf, Somnath Bhattacharyya, Pritam Das, Subhendu Bandyopadhyay, Saikat Dewanjee, Moumita Gangopadhyay","doi":"10.1515/znc-2024-0093","DOIUrl":"https://doi.org/10.1515/znc-2024-0093","url":null,"abstract":"<p><p>Drought stress remains a serious concern in <i>Oryza sativa</i> L. var <i>indica</i>, cultivar Satabdi (IET4786) production, particularly during the earliest growth phases, ultimately affecting yield due to the recent trend of delayed rain arrival in West Bengal, India. This study aimed to develop a cost-effective strategy to improve the drought tolerance capacity of rice seedlings by priming the seeds with flavonoid-enriched extract (FEE) of French marigold (<i>Tagetes patula</i>) petals to withstand the initial drought milieu. The morpho-physiological and biochemical responses of rice seedlings were evaluated to perceive the priming efficacy in alleviating water stress-induced untoward effects. The findings revealed that mechanical priming of the IET4786 seeds with FEE (50 mg/mL for 30 min) significantly improved seedling survival against initial drought stress for 14 days. After 24 h of recovery from drought stress, the primed seed-derived seedlings exhibited significantly improved morphological, physiological, biochemical, and redox parameters compared to the seedlings derived from unprimed seeds under net house conditions. In search of mechanistic insights, seed priming significantly increased proline content by endorsing Δ<sup>1</sup>-pyrroline-5-carboxylate synthetase activities, endorsed methylglyoxal clearance homeostasis by improving glyoxalase I and II activities through restoring glutathione (GSH) level, and enhanced polyamine accumulation in the leaves of seedlings to endure drought stress.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142972943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antidiabetic phytochemicals: an overview of medicinal plants and their bioactive compounds in diabetes mellitus treatment. 抗糖尿病植物化学物质:药用植物及其生物活性化合物在糖尿病治疗中的综述。
IF 1.8 4区 生物学
Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences Pub Date : 2025-01-10 DOI: 10.1515/znc-2024-0192
Yenework Nigussie Ashagrie, Kundan Kumar Chaubey, Mesfin Getachew Tadesse, Deen Dayal, Rakesh Kumar Bachheti, Nishant Rai, Atreyi Pramanik, Sorabh Lakhanpal, Anuj Kandwal, Archana Bachheti
{"title":"Antidiabetic phytochemicals: an overview of medicinal plants and their bioactive compounds in diabetes mellitus treatment.","authors":"Yenework Nigussie Ashagrie, Kundan Kumar Chaubey, Mesfin Getachew Tadesse, Deen Dayal, Rakesh Kumar Bachheti, Nishant Rai, Atreyi Pramanik, Sorabh Lakhanpal, Anuj Kandwal, Archana Bachheti","doi":"10.1515/znc-2024-0192","DOIUrl":"https://doi.org/10.1515/znc-2024-0192","url":null,"abstract":"<p><p>Diabetes mellitus (DM) is a group of metabolic disorders characterized by hyperglycemia due to insufficient insulin secretion or action. Contributing factors include genetic predisposition, obesity, family history, inactivity, and environmental risks. Type 2 diabetes mellitus (T2DM), the most common form, involves impaired insulin secretion by pancreatic β-cells, leading to insulin resistance. By 2045, it is projected that India and China will have approximately 134.3 and 110.8 million diabetic individuals, respectively. Although synthetic drugs are effective in managing DM, they often come with side effects. Consequently, plant-based phytochemicals with antidiabetic properties are gaining attention. Research indicates that around 115 medicinal plants (MPs) have antidiabetic effects, particularly those from the Fabaceae, Liliaceae, and Lamiaceae families. Bioactive compounds like alkaloids, triterpenoids, flavonoids, and phenolics are known to combat DM. Traditional medicinal systems, particularly in developing countries, offer effective DM management. This review highlights the importance of MPs and their bioactive compounds in treating diabetes and underscores the need for further research to commercialize plant-based antidiabetic drugs.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142957771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Latest developments in biomaterial interfaces and drug delivery: challenges, innovations, and future outlook. 生物材料界面和药物输送的最新发展:挑战、创新和未来展望。
IF 1.8 4区 生物学
Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences Pub Date : 2024-11-21 DOI: 10.1515/znc-2024-0208
Saraswati Patel, Samsi D Salaman, Devesh U Kapoor, Richa Yadav, Swapnil Sharma
{"title":"Latest developments in biomaterial interfaces and drug delivery: challenges, innovations, and future outlook.","authors":"Saraswati Patel, Samsi D Salaman, Devesh U Kapoor, Richa Yadav, Swapnil Sharma","doi":"10.1515/znc-2024-0208","DOIUrl":"https://doi.org/10.1515/znc-2024-0208","url":null,"abstract":"<p><p>An ideal drug carrier system should demonstrate optimal payload and release characteristics, thereby ensuring prolonged therapeutic index while minimizing adverse effects. The field of drug delivery has undergone significant advancements, particularly within the last two decades, owing to the revolutionary impact of biomaterials. The use of biomaterials presents significant due to their biocompatibility and biodegradability, which must be addressed in order to achieve effective drug delivery. The properties of the biomaterial and its interface are primarily influenced by their physicochemical attributes, physiological barriers, cellular trafficking, and immunomodulatory effects. By attuning these barriers, regulating the physicochemical properties, and masking the immune system's response, the bio interface can be effectively modulated, leading to the development of innovative supramolecular structures with enhanced effectiveness. With a comprehensive understanding of these technologies, there is a growing demand for repurposing existing drugs for new therapeutic indications within this space. This review aims to provide a substantial body of evidence showcasing the productiveness of biomaterials and their interface in drug delivery, as well as methods for mitigating and modulating barriers and physicochemical properties along with an examination of future prospects in this field.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phyto-pharmaceuticals as a safe and potential alternative in management of psoriasis: a review. 植物药作为治疗银屑病的安全和潜在替代品:综述。
IF 1.8 4区 生物学
Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences Pub Date : 2024-11-12 DOI: 10.1515/znc-2024-0153
Priya Patel, Kevinkumar Garala, Arti Bagada, Sudarshan Singh, Bhupendra G Prajapati, Devesh Kapoor
{"title":"Phyto-pharmaceuticals as a safe and potential alternative in management of psoriasis: a review.","authors":"Priya Patel, Kevinkumar Garala, Arti Bagada, Sudarshan Singh, Bhupendra G Prajapati, Devesh Kapoor","doi":"10.1515/znc-2024-0153","DOIUrl":"https://doi.org/10.1515/znc-2024-0153","url":null,"abstract":"<p><p>Psoriasis is a chronic autoimmune skin disease with a worldwide prevalence of 1-3 % results from uncontrolled proliferation of keratinocytes and affects millions of people. While there are various treatment options available, some of them may come with potential side effects and limitations. Recent research has shown that using bioactive compounds that originate from natural sources with a lower risk of side effects are relatively useful in safe management psoriasis. Bioactive compounds are molecules that are naturally available with potential therapeutic efficacy. Some of bioactive compounds that have shown promising results in the management of psoriasis include curcumin, resveratrol, quercetin, epigallocatechin-3-gallate, etc., possess anti-inflammatory, antioxidant, immunomodulatory, and anti-proliferative properties, with capabilities to suppress overall pathogenesis of psoriasis. Moreover, these bioactive compounds are generally considered as safe and are well-tolerated, making them potential options for long-term use in the management of various conditions linked with psoriasis. In addition, these natural products may also offer a more holistic approach to treat the disease, which is appealing to many patients. This review explores the bioactive compounds in mitigation of psoriasis either in native or incorporated within novel drug delivery. Moreover, recent clinical findings in relation to natural product usage have been also explored.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phytochemical profile and antioxidant capacity of the endemic species Bellevalia sasonii Fidan. 地方物种 Bellevalia sasonii Fidan 的植物化学成分和抗氧化能力。
IF 1.8 4区 生物学
Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences Pub Date : 2024-08-05 Print Date: 2025-03-26 DOI: 10.1515/znc-2024-0115
Metin Tekіn, İbrahim Selçuk Kuru
{"title":"Phytochemical profile and antioxidant capacity of the endemic species <i>Bellevalia sasonii</i> Fidan.","authors":"Metin Tekіn, İbrahim Selçuk Kuru","doi":"10.1515/znc-2024-0115","DOIUrl":"10.1515/znc-2024-0115","url":null,"abstract":"<p><p>The study investigated total phenolic-flavonoid content, antioxidant activity, and phytochemical compounds across various parts (bulb, stem, leaf, and flower) of the endemic <i>Bellevalia sasonii</i>, commonly known as hyacinth, belonging to the Asparagaceae family. Phenolic content was highest in bulb extracts (117.28 μg GAE) and lowest in stems (45.11 μg GAE). Conversely, leaf extracts exhibited the highest flavonoid content (79.44 μg QEs), while stems showed the lowest (22.77 μg QEs). When the antioxidant activities were compared, by DPPH method leaf = flower > bulb > stem; in ABTS and CUPRAC methods bulb > flower > leaf > stem, respectively. Considering the results in general, it was revealed that bulbs and flowers displayed higher activity, while stem exhibited lower activity compared to other parts. The phytochemical analysis identified 53 active substances, with 27 absent in any extract and 15 detected across all extracts. The distribution of phytochemicals varied among parts, with bulbs, stems, flowers, and leaves also different numbers. The LC-MS/MS analysis revealed prominent metabolites including fumaric acid in leaves, caffeic acid in bulbs, and cosmosiin and quinic acid in flowers. This study provides foundational insights into <i>B. sasonii</i>, an important endemic plant in Türkiye, laying the groundwork for future research on its medicinal and ecological roles.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":" ","pages":"75-83"},"PeriodicalIF":1.8,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing psoriasis drug delivery through topical liposomes. 通过局部脂质体推进牛皮癣药物输送。
IF 1.8 4区 生物学
Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences Pub Date : 2024-07-23 Print Date: 2025-03-26 DOI: 10.1515/znc-2024-0118
Devesh U Kapoor, Rahul Garg, Rahul Maheshwari, Mansi Gaur, Deepak Sharma, Bhupendra G Prajapati
{"title":"Advancing psoriasis drug delivery through topical liposomes.","authors":"Devesh U Kapoor, Rahul Garg, Rahul Maheshwari, Mansi Gaur, Deepak Sharma, Bhupendra G Prajapati","doi":"10.1515/znc-2024-0118","DOIUrl":"10.1515/znc-2024-0118","url":null,"abstract":"<p><p>Psoriasis, recognized as a chronic inflammatory skin disorder, disrupts immune system functionality. Global estimates by the World Psoriasis Day consortium indicate its impact on approximately 130 million people, constituting 4 to 5 percent of the worldwide population. Conventional drug delivery systems, mainly designed to alleviate psoriasis symptoms, fall short in achieving targeted action and optimal bioavailability due to inherent challenges such as the drug's brief half-life, instability, and a deficiency in ensuring both safety and efficacy. Liposomes, employed in drug delivery systems, emerge as highly promising carriers for augmenting the therapeutic efficacy of topically applied drugs. These small unilamellar vesicles demonstrate enhanced penetration capabilities, facilitating drug delivery through the stratum corneum layer of skin. This comprehensive review article illuminates diverse facets of liposomes as a promising drug delivery system to treat psoriasis. Addressing various aspects such as formulation strategies, encapsulation techniques, and targeted delivery, the review underscores the potential of liposomes in enhancing the efficacy and specificity of psoriasis treatments.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":" ","pages":"41-60"},"PeriodicalIF":1.8,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revolutionizing the probiotic functionality, biochemical activity, antibiotic resistance and specialty genes of Pediococcus acidilactici BCB1H via in-vitro and in-silico approaches. 通过体外和体内方法革新酸性乳酸球菌 BCB1H 的益生菌功能、生化活性、抗生素抗性和特异基因。
IF 1.8 4区 生物学
Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences Pub Date : 2024-07-19 Print Date: 2025-03-26 DOI: 10.1515/znc-2024-0074
Gege Hu, Muhammad Naveed, Muhammad Aqib Shabbir, Abid Sarwar, Junaid Yousaf, Yang Zhennai, Tariq Aziz, Metab Alharbi, Abdulrahman Alshammari
{"title":"Revolutionizing the probiotic functionality, biochemical activity, antibiotic resistance and specialty genes of <i>Pediococcus acidilactici</i> BCB1H via <i>in-vitro</i> and <i>in-silico</i> approaches.","authors":"Gege Hu, Muhammad Naveed, Muhammad Aqib Shabbir, Abid Sarwar, Junaid Yousaf, Yang Zhennai, Tariq Aziz, Metab Alharbi, Abdulrahman Alshammari","doi":"10.1515/znc-2024-0074","DOIUrl":"10.1515/znc-2024-0074","url":null,"abstract":"<p><p>This study presents a comprehensive genomic exploration, biochemical characterization, and the identification of antibiotic resistance and specialty genes of <i>Pediococcus acidilactici</i> BCB1H strain. The functional characterization, genetic makeup, biological activities, and other considerable parameters have been investigated in this study with a prime focus on antibiotic resistance and specialty gene profiles. The results of this study revealed the unique susceptibility patterns for antibiotic resistance and specialty genes. BCB1H had good <i>in vitro</i> probiotic properties, which survived well in simulated artificial gastrointestinal fluid, and exhibited acid and bile salt resistance. BCB1H didn't produce hemolysis and had certain antibiotic sensitivity, making it a relatively safe LAB strain. Simultaneously, it had good self-coagulation characteristics and antioxidant activity. The EPS produced by BCB1H also had certain antioxidant activity and hypoglycemic function. Moreover, the genome with a 42.4 % GC content and a size of roughly 1.92 million base pairs was analyzed in the genomic investigations. The genome annotation identified 192 subsystems and 1,895 genes, offering light on the metabolic pathways and functional categories found in BCB1H. The identification of specialty genes linked to the metabolism of carbohydrates, stress response, pathogenicity, and amino acids highlighted the strain's versatility and possible uses. This study establishes the groundwork for future investigations by highlighting the significance of using multiple strains to investigate genetic diversity and experimental validation of predicted genes. The results provide a roadmap for utilizing <i>P. acidilactici</i> BCB1H's genetic traits for industrial and medical applications, opening the door to real-world uses in industries including food technology and medicine.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":" ","pages":"103-118"},"PeriodicalIF":1.8,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信