改性席夫碱附加 1,2,4-三唑杂化物支架的合成:阐明体外和硅学中 α 淀粉酶和 α 葡萄糖苷酶抑制剂的潜力。

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shahzad Ahmad Abbasi, Fazal Rahim, Rafaqat Hussain, Wajid Rehman, Shoaib Khan, Muhammad Taha, Tayyiaba Iqbal, Yousaf Khan, Syed Adnan Ali Shah
{"title":"改性席夫碱附加 1,2,4-三唑杂化物支架的合成:阐明体外和硅学中 α 淀粉酶和 α 葡萄糖苷酶抑制剂的潜力。","authors":"Shahzad Ahmad Abbasi, Fazal Rahim, Rafaqat Hussain, Wajid Rehman, Shoaib Khan, Muhammad Taha, Tayyiaba Iqbal, Yousaf Khan, Syed Adnan Ali Shah","doi":"10.1515/znc-2024-0073","DOIUrl":null,"url":null,"abstract":"<p><p>The current study involves the synthesis of Schiff bases based on 1,2,4-triazoles skeleton and assessing their α-amylase and α-glucosidase profile. Furthermore, the precise structures of the synthesized derivatives were elucidated using various spectroscopic methods such as <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and HREI-MS. Using glimepiride as the reference standard, the <i>in vitro</i> α-glucosidase and α-amylase inhibitory activities of the synthesized compounds were evaluated in order to determine their potential anti-diabetic properties. All analogues showed varied range of inhibitory activity having IC<sub>50</sub> values ranging from 17.09 ± 0.72 to 45.34 ± 0.03 μM (α-amylase) and 16.35 ± 0.42 to 42.31 ± 0.09 μM (α-glucosidase), respectively. Specifically, the compounds <b>1</b>, <b>7</b> and <b>8</b> were found to be significantly active with IC<sub>50</sub> values of 17.09 ± 0.72, 19.73 ± 0.42, and 23.01 ± 0.04 μM (against α-amylase) and 16.35 ± 0.42, 18.55 ± 0.26, and 20.07 ± 0.02 μM (against α-glucosidase) respectively. The obtained results were compared with the Glimepiride reference drug having IC<sub>50</sub> values of 13.02 ± 0.11 μM (for α-glucosidase) and 15.04 ± 0.02 μM (for α-amylase), respectively. The structure-activity relationship (SAR) studies were conducted based on differences in substituent patterns at varying position of aryl rings A and B may cause to alter the inhibitory activities of both α-amylase and α-glucosidase enzymes. Additionally, the molecular docking study was carried out to explore the binding interactions possessed by most active analogues with the active sites of targeted α-amylase and α-glucosidase enzymes.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of modified Schiff base appended 1,2,4-triazole hybrids scaffolds: elucidating the <i>in vitro</i> and <i>in silico</i> α-amylase and α-glucosidase inhibitors potential.\",\"authors\":\"Shahzad Ahmad Abbasi, Fazal Rahim, Rafaqat Hussain, Wajid Rehman, Shoaib Khan, Muhammad Taha, Tayyiaba Iqbal, Yousaf Khan, Syed Adnan Ali Shah\",\"doi\":\"10.1515/znc-2024-0073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The current study involves the synthesis of Schiff bases based on 1,2,4-triazoles skeleton and assessing their α-amylase and α-glucosidase profile. Furthermore, the precise structures of the synthesized derivatives were elucidated using various spectroscopic methods such as <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and HREI-MS. Using glimepiride as the reference standard, the <i>in vitro</i> α-glucosidase and α-amylase inhibitory activities of the synthesized compounds were evaluated in order to determine their potential anti-diabetic properties. All analogues showed varied range of inhibitory activity having IC<sub>50</sub> values ranging from 17.09 ± 0.72 to 45.34 ± 0.03 μM (α-amylase) and 16.35 ± 0.42 to 42.31 ± 0.09 μM (α-glucosidase), respectively. Specifically, the compounds <b>1</b>, <b>7</b> and <b>8</b> were found to be significantly active with IC<sub>50</sub> values of 17.09 ± 0.72, 19.73 ± 0.42, and 23.01 ± 0.04 μM (against α-amylase) and 16.35 ± 0.42, 18.55 ± 0.26, and 20.07 ± 0.02 μM (against α-glucosidase) respectively. The obtained results were compared with the Glimepiride reference drug having IC<sub>50</sub> values of 13.02 ± 0.11 μM (for α-glucosidase) and 15.04 ± 0.02 μM (for α-amylase), respectively. The structure-activity relationship (SAR) studies were conducted based on differences in substituent patterns at varying position of aryl rings A and B may cause to alter the inhibitory activities of both α-amylase and α-glucosidase enzymes. Additionally, the molecular docking study was carried out to explore the binding interactions possessed by most active analogues with the active sites of targeted α-amylase and α-glucosidase enzymes.</p>\",\"PeriodicalId\":49344,\"journal\":{\"name\":\"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/znc-2024-0073\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/znc-2024-0073","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目前的研究涉及以 1,2,4 三唑为骨架合成希夫碱,并评估它们的 α 淀粉酶和 α 葡萄糖苷酶特性。此外,还利用 1H-NMR、13C-NMR 和 HREI-MS 等多种光谱方法阐明了合成衍生物的精确结构。以格列美脲为参考标准,对合成化合物的体外α-葡萄糖苷酶和α-淀粉酶抑制活性进行了评估,以确定其潜在的抗糖尿病特性。所有类似物都显示出不同范围的抑制活性,IC50 值分别为 17.09 ± 0.72 至 45.34 ± 0.03 μM(α-淀粉酶)和 16.35 ± 0.42 至 42.31 ± 0.09 μM(α-葡萄糖苷酶)。具体而言,化合物 1、7 和 8 具有明显的活性,其 IC50 值分别为 17.09 ± 0.72、19.73 ± 0.42 和 23.01 ± 0.04 μM(针对α-淀粉酶)以及 16.35 ± 0.42、18.55 ± 0.26 和 20.07 ± 0.02 μM(针对α-葡萄糖苷酶)。所得结果与格列美脲(Glimepiride)参考药物进行了比较,后者的 IC50 值分别为 13.02 ± 0.11 μM(针对α-葡萄糖苷酶)和 15.04 ± 0.02 μM(针对α-淀粉酶)。根据芳基环 A 和 B 的不同位置上取代基形态的差异可能会改变对 α 淀粉酶和 α 葡萄糖苷酶的抑制活性,进行了结构-活性关系(SAR)研究。此外,还进行了分子对接研究,以探讨大多数活性类似物与目标α-淀粉酶和α-葡萄糖苷酶活性位点的结合相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of modified Schiff base appended 1,2,4-triazole hybrids scaffolds: elucidating the in vitro and in silico α-amylase and α-glucosidase inhibitors potential.

The current study involves the synthesis of Schiff bases based on 1,2,4-triazoles skeleton and assessing their α-amylase and α-glucosidase profile. Furthermore, the precise structures of the synthesized derivatives were elucidated using various spectroscopic methods such as 1H-NMR, 13C-NMR and HREI-MS. Using glimepiride as the reference standard, the in vitro α-glucosidase and α-amylase inhibitory activities of the synthesized compounds were evaluated in order to determine their potential anti-diabetic properties. All analogues showed varied range of inhibitory activity having IC50 values ranging from 17.09 ± 0.72 to 45.34 ± 0.03 μM (α-amylase) and 16.35 ± 0.42 to 42.31 ± 0.09 μM (α-glucosidase), respectively. Specifically, the compounds 1, 7 and 8 were found to be significantly active with IC50 values of 17.09 ± 0.72, 19.73 ± 0.42, and 23.01 ± 0.04 μM (against α-amylase) and 16.35 ± 0.42, 18.55 ± 0.26, and 20.07 ± 0.02 μM (against α-glucosidase) respectively. The obtained results were compared with the Glimepiride reference drug having IC50 values of 13.02 ± 0.11 μM (for α-glucosidase) and 15.04 ± 0.02 μM (for α-amylase), respectively. The structure-activity relationship (SAR) studies were conducted based on differences in substituent patterns at varying position of aryl rings A and B may cause to alter the inhibitory activities of both α-amylase and α-glucosidase enzymes. Additionally, the molecular docking study was carried out to explore the binding interactions possessed by most active analogues with the active sites of targeted α-amylase and α-glucosidase enzymes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
5.00%
发文量
55
期刊介绍: A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) is an international scientific journal and a community resource for the emerging field of natural and natural-like products. The journal publishes original research on the isolation (including structure elucidation), bio-chemical synthesis and bioactivities of natural products, their biochemistry, pharmacology, biotechnology, and their biological activity and innovative developed computational methods for predicting the structure and/or function of natural products. A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) welcomes research papers in fields on the chemistry-biology boundary which address scientific ideas and approaches to generate and understand natural compounds on a molecular level and/or use them to stimulate and manipulate biological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信