Redefining a new frontier in alkaptonuria therapy with AI-driven drug candidate design via in- silico innovation.

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Muhammad Naveed, Khushbakht Javed, Tariq Aziz, Ali Zafar, Mahnoor Fatima, Imran Ali, Ayaz Ali Khan, Thamer H Albekairi
{"title":"Redefining a new frontier in alkaptonuria therapy with AI-driven drug candidate design via <i>in-</i> <i>silico</i> innovation.","authors":"Muhammad Naveed, Khushbakht Javed, Tariq Aziz, Ali Zafar, Mahnoor Fatima, Imran Ali, Ayaz Ali Khan, Thamer H Albekairi","doi":"10.1515/znc-2024-0075","DOIUrl":null,"url":null,"abstract":"<p><p>A rare metabolic condition called alkaptonuria (AKU) is caused by a decrease in homogentisate 1,2 dioxygenase (HGO) activity due to a mutation in homogentisate dioxygenase (HGD) gene. Homogentisic acid is a byproduct of the catabolism of tyrosine and phenylalanine that darkens the urine and accumulates in connective tissues which causes an agonizing arthritis. Employing the use of deep learning artificial intelligence (AI) drug design, this study aims to alleviate the current toxicity of the AKU drugs currently in use, particularly nitisinone, by utilizing the natural flavanol kaempferol molecule as a 4-hydroxyphenylpyruvate dioxygenase inhibitor. Kaempferol was employed to generate three effective <i>de novo</i> drug candidates targeting the enzyme 4-hydroxyphenylpyruvate dioxygenase using an AI drug design tool. We present novel AIK formulations in the present study. The AIK's (Artificial Intelligence Kaempferol) examination of drug-likeliness among the three led to its choice as a possible target. The toxicity assessment research of AIK demonstrates that it is not only safer to use than other treatments, but also more efficient. The docking of the AIGT with 4-hydroxyphenylpyruvate dioxygenase, which revealed a binding affinity of around -9.099 kcal/mol, highlights the AIK's potential as a therapeutic candidate. An innovative approach to deal with challenging circumstances is thus presented in this study by new formulations kaempferol that have been meticulously designed by AI. The results of the <i>in vitro</i> tests must be confirmed <i>in vivo</i>, even though AI-designed AIK is effective and sufficiently safe as computed.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/znc-2024-0075","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A rare metabolic condition called alkaptonuria (AKU) is caused by a decrease in homogentisate 1,2 dioxygenase (HGO) activity due to a mutation in homogentisate dioxygenase (HGD) gene. Homogentisic acid is a byproduct of the catabolism of tyrosine and phenylalanine that darkens the urine and accumulates in connective tissues which causes an agonizing arthritis. Employing the use of deep learning artificial intelligence (AI) drug design, this study aims to alleviate the current toxicity of the AKU drugs currently in use, particularly nitisinone, by utilizing the natural flavanol kaempferol molecule as a 4-hydroxyphenylpyruvate dioxygenase inhibitor. Kaempferol was employed to generate three effective de novo drug candidates targeting the enzyme 4-hydroxyphenylpyruvate dioxygenase using an AI drug design tool. We present novel AIK formulations in the present study. The AIK's (Artificial Intelligence Kaempferol) examination of drug-likeliness among the three led to its choice as a possible target. The toxicity assessment research of AIK demonstrates that it is not only safer to use than other treatments, but also more efficient. The docking of the AIGT with 4-hydroxyphenylpyruvate dioxygenase, which revealed a binding affinity of around -9.099 kcal/mol, highlights the AIK's potential as a therapeutic candidate. An innovative approach to deal with challenging circumstances is thus presented in this study by new formulations kaempferol that have been meticulously designed by AI. The results of the in vitro tests must be confirmed in vivo, even though AI-designed AIK is effective and sufficiently safe as computed.

通过硅学创新,以人工智能驱动候选药物设计,重新定义碱蛋白尿治疗的新领域。
一种罕见的代谢性疾病叫做烷胨尿症(AKU),是由于同戊酸二氧酶(HGD)基因突变导致同戊酸 1,2-二氧酶(HGO)活性降低而引起的。高戊二酸是酪氨酸和苯丙氨酸分解代谢的副产物,会使尿液变黑,并积聚在结缔组织中,导致令人痛苦的关节炎。本研究采用深度学习人工智能(AI)药物设计,旨在利用天然黄酮山奈酚分子作为 4-羟基苯基丙酮酸二氧酶抑制剂,减轻目前使用的 AKU 药物(尤其是尼替西酮)的毒性。利用人工智能药物设计工具,山奈酚被用来生成三种有效的、针对 4-羟基苯丙酮酸二加氧酶的新候选药物。我们在本研究中提出了新颖的 AIK 配方。AIK(人工智能山奈酚)对三种候选药物的可药性进行了检查,最终选择了山奈酚作为可能的靶点。AIK 的毒性评估研究表明,与其他治疗方法相比,AIK 的使用不仅更安全,而且更有效。AIGT 与 4-hydroxyphenylpyruvate dioxygenase 的对接显示,其结合亲和力约为 -9.099 kcal/mol,这凸显了 AIK 作为候选疗法的潜力。因此,本研究通过 AI 公司精心设计的山奈酚新配方,提出了一种应对挑战性环境的创新方法。尽管 AI 设计的 AIK 经计算有效且足够安全,但体外测试的结果必须在体内得到证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
5.00%
发文量
55
期刊介绍: A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) is an international scientific journal and a community resource for the emerging field of natural and natural-like products. The journal publishes original research on the isolation (including structure elucidation), bio-chemical synthesis and bioactivities of natural products, their biochemistry, pharmacology, biotechnology, and their biological activity and innovative developed computational methods for predicting the structure and/or function of natural products. A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) welcomes research papers in fields on the chemistry-biology boundary which address scientific ideas and approaches to generate and understand natural compounds on a molecular level and/or use them to stimulate and manipulate biological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信