通过微生物固定化提高微生物燃料电池的性能。

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yana Mersinkova, Hyusein Yemendzhiev
{"title":"通过微生物固定化提高微生物燃料电池的性能。","authors":"Yana Mersinkova, Hyusein Yemendzhiev","doi":"10.1515/znc-2023-0175","DOIUrl":null,"url":null,"abstract":"<p><p>Bio-electrochemical Systems (BES), particularly Microbial Fuel Cells (MFC), have emerged as promising technologies in environmental biotechnology. This study focused on optimizing the anode bacterial culture immobilization process to enhance BES performance. The investigation combines and modifies two key immobilization methods: covalent bonding with glutaraldehyde and inclusion in a chitosan gel in order to meet the criteria and requirements of the bio-anodes in MFC. The performance of MFCs with immobilized and suspended cultures was compared in parallel experiments. Both types showed similar substrate utilization dynamics with slight advantage of the immobilized bio-anode considering the lower concentration of biomass. The immobilized MFC exhibited higher power generation and metabolic activity, as well. Probably, this is due to improved anodic respiration and higher coulombic efficiency of the reactor. Analysis of organic acids content supported this conclusion showing significant inhibition of the fermentation products production in the MFC reactor with immobilized anode culture.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing microbial fuel cell performance through microbial immobilization.\",\"authors\":\"Yana Mersinkova, Hyusein Yemendzhiev\",\"doi\":\"10.1515/znc-2023-0175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bio-electrochemical Systems (BES), particularly Microbial Fuel Cells (MFC), have emerged as promising technologies in environmental biotechnology. This study focused on optimizing the anode bacterial culture immobilization process to enhance BES performance. The investigation combines and modifies two key immobilization methods: covalent bonding with glutaraldehyde and inclusion in a chitosan gel in order to meet the criteria and requirements of the bio-anodes in MFC. The performance of MFCs with immobilized and suspended cultures was compared in parallel experiments. Both types showed similar substrate utilization dynamics with slight advantage of the immobilized bio-anode considering the lower concentration of biomass. The immobilized MFC exhibited higher power generation and metabolic activity, as well. Probably, this is due to improved anodic respiration and higher coulombic efficiency of the reactor. Analysis of organic acids content supported this conclusion showing significant inhibition of the fermentation products production in the MFC reactor with immobilized anode culture.</p>\",\"PeriodicalId\":49344,\"journal\":{\"name\":\"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/znc-2023-0175\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/27 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/znc-2023-0175","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/27 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物电化学系统(BES),尤其是微生物燃料电池(MFC),已成为环境生物技术领域前景广阔的技术。本研究的重点是优化阳极细菌培养固定过程,以提高 BES 的性能。该研究结合并改进了两种关键的固定方法:与戊二醛的共价键合和加入壳聚糖凝胶,以满足 MFC 中生物阳极的标准和要求。在平行实验中,比较了固定培养物和悬浮培养物的 MFC 性能。两种类型显示出相似的底物利用动态,考虑到生物质的浓度较低,固定化生物阳极略胜一筹。固定化 MFC 的发电量和代谢活性也更高。这可能是由于阳极呼吸得到改善,反应器的库仑效率更高。对有机酸含量的分析支持了这一结论,表明在带有固定阳极培养物的 MFC 反应器中,发酵产物的产生受到了明显的抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing microbial fuel cell performance through microbial immobilization.

Bio-electrochemical Systems (BES), particularly Microbial Fuel Cells (MFC), have emerged as promising technologies in environmental biotechnology. This study focused on optimizing the anode bacterial culture immobilization process to enhance BES performance. The investigation combines and modifies two key immobilization methods: covalent bonding with glutaraldehyde and inclusion in a chitosan gel in order to meet the criteria and requirements of the bio-anodes in MFC. The performance of MFCs with immobilized and suspended cultures was compared in parallel experiments. Both types showed similar substrate utilization dynamics with slight advantage of the immobilized bio-anode considering the lower concentration of biomass. The immobilized MFC exhibited higher power generation and metabolic activity, as well. Probably, this is due to improved anodic respiration and higher coulombic efficiency of the reactor. Analysis of organic acids content supported this conclusion showing significant inhibition of the fermentation products production in the MFC reactor with immobilized anode culture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
5.00%
发文量
55
期刊介绍: A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) is an international scientific journal and a community resource for the emerging field of natural and natural-like products. The journal publishes original research on the isolation (including structure elucidation), bio-chemical synthesis and bioactivities of natural products, their biochemistry, pharmacology, biotechnology, and their biological activity and innovative developed computational methods for predicting the structure and/or function of natural products. A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) welcomes research papers in fields on the chemistry-biology boundary which address scientific ideas and approaches to generate and understand natural compounds on a molecular level and/or use them to stimulate and manipulate biological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信