{"title":"Multifunctional Drug Delivery System: Nanosponges.","authors":"Piyali Barik, Pooja Rani Bhaisal, Sonia Singh","doi":"10.2174/0118722105246668231012113121","DOIUrl":"https://doi.org/10.2174/0118722105246668231012113121","url":null,"abstract":"<p><p>In recent years, nanotechnology has been the focus of study for the cure of different diseases, among which nanosponge delivery system is one of a kind. Nano sponges are tiny, highly porous, three-dimensional nanostructures with a size range of 250nm-1µm in an amorphous or crystalline structure. Nanosponges usually act as an excipient or carrier of a drug in the different delivery systems. The type of polymers and cross-linkers, along with their concentration ratio, causes variation in nanosponges's dimension and encapsulation efficiency. Nanosponges have gained prominence in recent times due to their distinct ability to encapsulate both hydrophilic and lipophilic drugs within their internal cavity, thereby improving the solubility of drugs that have low water solubility. Virus-like size helps the nanosponges to circulate within the body without getting eliminated by the immune system until they stick to the targeted part of the body, which makes it the perfect candidate for a targeted drug delivery system and controlled delivery system as well because of its slow drug release property for a more extended period. Cyclodextrin-based nanosponges are the best choice for anticancer drug delivery as their small virus-like diameter helps them in passive targeting by enhancing the enhanced permeability and retention effect, allowing the anticancer drug to stay inside the tumour cell to show more significant therapeutic action on cancer, while for active targeting to the cancerous cell, nanosponges are attached with a ligand on it for receptor binding purpose. It can be used for drug delivery in many major diseases like brain-related diseases, diabetes, cancer, fungal, hypertension, etc., in different dosage forms, like oral, topical, hydrogel, parenteral, etc.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71428296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Berlin Grace Viswanathan Mariammal, David Wilson Devarajan, Siddikuzzaman, Viswanathan Sundaram, Ragavi Ravichandran, Guruvayoorappan Chandrasekharan, Kathirvelan Chinnadurai
{"title":"An Efficient Suppression of EGFR and B-Raf mRNA Overexpression in the Lung of Benzo[a]pyrene-induced mice by Cationic Lipo-ATRA Nanoformulation.","authors":"Berlin Grace Viswanathan Mariammal, David Wilson Devarajan, Siddikuzzaman, Viswanathan Sundaram, Ragavi Ravichandran, Guruvayoorappan Chandrasekharan, Kathirvelan Chinnadurai","doi":"10.2174/0118722105246143231016105620","DOIUrl":"10.2174/0118722105246143231016105620","url":null,"abstract":"<p><strong>Background: </strong>The molecular drug all-trans retinoic acid (ATRA) acts on cancer cells via different molecular pathways, but its poor bioavailability in cancer cells limits its potency. This study was, therefore, carried out to analyse the oncogene expressions in the lung tissue of benzo[a]pyrene (B[a]P)-induced mice and compare between free ATRA and cationic liposome nanoformulation (lipo- ATRA) treatments.</p><p><strong>Objective: </strong>This study was designed to analyse the changes in the expression levels of epidermal growth factor receptor (EGFR) and B-Raf in the lung tissues of B[a]P-induced mice during the cancer development stage itself and to find the suppressive effect of free ATRA and lipo-ATRA.</p><p><strong>Methods: </strong>Lung cancer was induced in mice by oral ingestion of 50mg/kg body weight B[a]P weekly twice for four consecutive weeks. Then, the mice were treated with free and lipo-ATRA (0.60mg/kg) for 30 days via i.v injection. The EGFR and B-Raf gene expressions were analyzed in lung cells by reverse transcriptase polymerase chain reaction (RT-PCR) and quantitative polymerase chain reaction (qPCR).</p><p><strong>Results: </strong>The RT-PCR gene band density and the relative quantity (RQ) values from qPCR revealed both EGFR and B-Raf genes to be significantly overexpressed in B[a]P control mice while having very low or no expression in normal mice. This indicates that they function as oncogenes in B[a]P-induced lung carcinogenesis. The lipo-ATRA treatment has shown a highly significant increase in RQ values for both EGFR and BRaf when compared to the free ATRA treatment.</p><p><strong>Conclusion: </strong>The study results have revealed the cationic lipo-ATRA treatment to have enhanced the bioavailability of ATRA in lung tissue due to its significant suppression action on EGFR-mediated oncogenes' expressions. Furthermore, the EGFR and BRaf could be the molecular targets of ATRA action in lung carcinogenesis.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71488000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Double Bubble Electrospinning: Patents and Nanoscale Interface.","authors":"Muhammad Ali, Ya Li, Ji-Huan He","doi":"10.2174/0118722105259729231004040238","DOIUrl":"https://doi.org/10.2174/0118722105259729231004040238","url":null,"abstract":"<p><strong>Background: </strong>Bipolymeric nanofibers have gained significant attention in various fields due to their enhanced functionality, improved mechanical properties, and controlled release capabilities. However, the fabrication of these composite fibers with a well-defined polymer-polymer interface remains a challenging task.</p><p><strong>Methods: </strong>The double bubble electrospinning setup was developed and simulated using Maxwell 3D to analyze the electric field. PVP and PVA polymers were electrospun simultaneously to create bipolymer nanofibers with an interface. The resulting nanofibers were compared with nanofibers made from pure PVA, PVP, and a PVA/PVP blend. The characterization of the nanofibers was performed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA).</p><p><strong>Results: </strong>The SEM images showed the formation of PVA/PVP interfacial nanofibers aligned side by side, with a diameter of a few thousand nanometers on each side. By increasing the voltage from 20 kV to 40 kV during electrospinning, the diameter of the nanofibers on the PVA and PVP sides was successfully reduced by 60.8% and 66.3%, respectively. FTIR analysis confirmed the presence of both PVA and PVP in the bipolymeric interfacial nanofibers. TGA analysis demonstrated a weight retention of 14.28% compared to PVA, PVP, and the PVA/PVP blend even after degradation at 500°C. The Maxwell simulation of double bubble electrospinning revealed a stronger and more uniform electric field pattern at 40 kV compared to 20 kV.</p><p><strong>Conclusion: </strong>The study has demonstrated the potential of double bubble electrospinning for the fabrication of bipolymer nanofibers with an interface, opening new avenues for the development of functional nanofibers.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50159140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nano-approaches and Recent Advancements in Strategies to Combat Challenges Associated with Thyroid Cancer Therapies.","authors":"Gurmehar Singh, Jatin Rathee, Triveni, Neha Jain, Upendra Nagaich, Shreya Kaul, Manisha Pandey, Bapi Gorain","doi":"10.2174/0118722105257210230929083126","DOIUrl":"https://doi.org/10.2174/0118722105257210230929083126","url":null,"abstract":"<p><p>The prevalence of thyroid cancer (TC) is more common in women and is up to 43% in patients aged between 45-65 years. The battle against TC is hampered by the lack of effective diagnostic and therapeutic approaches. The effectiveness of surgical procedures, such as thyroidectomy and nutraceutical treatments, are accompanied by several difficulties and still require further research. Alternatively, the DNA-damaging traditional model of chemotherapy is linked to poor solubility, untoward systemic effects, and associated cytotoxicity, instituting an urgent need to establish a specialized, factual, and reliable delivery tool. In order to overcome the limitations of conventional delivery systems, nanotechnology-based delivery tools have shown the potential of articulating endless inherent implementations. The probable benefits of emerging nanotechnology-based diagnostic techniques include rapid screening and early illness diagnosis, which draws investigators to investigate and assess the possibility of this treatment for TC. Subsequently, organic (e.g., liposomes, polymer-based, and dendrimers) and inorganic (e.g., gold, carbon-based, mesoporous silica, magnetic, and quantum dots) NPs and hybrids thereof (liposome-silica, chitosan-carbon, and cell membrane-coated) have been projected for TC biomarker screening, therapy, and detection, providing better outcomes than traditional diagnostic and treatment techniques. Therefore, this review aims to offer a broad perspective on nanoplatform in TC, accompanied by present and potential future treatment options and screening techniques. The goal of cancer therapy has traditionally been to \"search a thorn in a hayloft\"; therefore, this article raises the possibility of treating TC using nano-oncotherapeutics, which might be useful clinically and will encourage future researchers to explore this tool's potential and drawbacks.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41240277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"INVASOMES: New Carriers for Transdermal Delivery of Anticancer Drugs","authors":"Lalit Kumar","doi":"10.2174/0118722105254232230920053519","DOIUrl":"https://doi.org/10.2174/0118722105254232230920053519","url":null,"abstract":"<jats:sec>\u0000<jats:title />\u0000<jats:p />\u0000</jats:sec>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136254093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Comprehensive Review on Recent Advances and Patents of Niosomes","authors":"Sushma Verma, Sakshi Saharawat","doi":"10.2174/0118722105259776231002071218","DOIUrl":"https://doi.org/10.2174/0118722105259776231002071218","url":null,"abstract":"Abstract: Niosomes are novel, self-assembled vesicular carriers that deliver both lipophilic and hydrophilic drugs at the specific site in a targeted way, enhancing bioavailability and extending therapeutic effects. Niosomes are a versatile drug delivery system with a diverse range of applications from gene to brain-targeted delivery and they are more attractive choices than liposomes as they are efficient at biodegrading. Niosome offers several advantages over conventional drug delivery systems, including enhanced stability, and also have gained a lot of focus in natural product delivery in recent years. This review provides a comprehensive view of niosomal research and recent advancements, including classification and fabrication methods, and their role in drug delivery and targeting. The description of the rise in niosomal formulation patents around the world is also elaborated along with the natural product delivery of niosomes which has recently gained significance. Patents on novel preparation, loading, and modification techniques have enhanced the importance of niosome in the pharmaceutical industry.","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":"115 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136361067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dendrimers: Patents for Alzheimer's Disease.","authors":"Shubhrat Maheshwari, Aditya Singh","doi":"10.2174/1872210517666230831154408","DOIUrl":"https://doi.org/10.2174/1872210517666230831154408","url":null,"abstract":"<p><p>Cells and nervous system connections that are crucial for movement, coordination, strength, sensation, and thought are gradually damaged in neurodegenerative illnesses. Amyloid beta (Aβ)- accumulating macromolecules in the brain are the primary cause of the disease's chronic symptoms, according to analysis carried out during the last 20 years. Plaques and clumps of amyloid- build up in the brain, obstructing neuronal signals and destroying neural connections. Tau, a protein that results in the formation of \"neurofibrillary tangles\" in the brain, another hallmark of neuronal death, has been the focus of a lot of research. Dendrimers Delivery (DDs) is one of the most promising advancements in nanotechnology for biomedical applications, particularly drug delivery. Some of the main categories of dendrimers employed in the successful management of neurodegenerative illnesses are polyamidoamine dendrimers (PAMAM) dendrimers, polypropylenimine dendrimers (PPI), Poly-l-lysine dendrimers (PLL), and carbosilane dendrimers. The tight blood-brain barrier (BBB), which limits the entry of medications or therapeutic agents, makes it difficult to treat central nervous system disorders. Dendrimers have attracted the attention of scientists more than other non-invasive methods of drug delivery across the BBB and improve the uptake of medicines in the brain's target tissues. The major benefits of dendrimers include their adaptability, biocompatibility, ability to load pharmaceuticals into the core and surface, and nanosize. This review has updated the status of the patent and clinical trials literature pertaining to dendrimer use in AD.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71414976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guanzhong Huo, Wenqing Lin, Ke Wang, Zhe Pei, Xuan Du, Shuiyuan Chen, Chao Su, Qingying Ye, Guilin Chen
{"title":"Magnetic field modulation effect of photoelectric properties in dye-sensitized solar cells with La0.67(Ca,Ba)0.33MnO3 as counter electrodes.","authors":"Guanzhong Huo, Wenqing Lin, Ke Wang, Zhe Pei, Xuan Du, Shuiyuan Chen, Chao Su, Qingying Ye, Guilin Chen","doi":"10.2174/1872210518666230915142211","DOIUrl":"https://doi.org/10.2174/1872210518666230915142211","url":null,"abstract":"<p><strong>Background: </strong>In recent years, many semiconductor materials with unique band structures have been used as Pt counter electrode (CE) substitutes for dye-sensitized solar cells (DSSCs), which makes the photoelectric properties of DSSCs possible to be modulated by electric field, magnetic field, and light field. In this work, La0.67(Ca Ba)0.33MnO3 (LCBMO) thin film is employed to act as CE in DSSCs.</p><p><strong>Method: </strong>The experimental results indicate that short-circuit current density and photoelectric conversion efficiency present better stability when applying an external magnetic field to the DSSCs. Furthermore, both the exchange current density (J0) and limit diffusion current density (Jlim) are largely enhanced by an external magnetic field. J0 increases from -0.51 mA•cm-2 to -0.65 mA•cm-2, and Jlim increases from 0.2 mA•cm-2 to 0.3 mA•cm-2 when applying a magnetic field of 0.25 T.</p><p><strong>Result: </strong>The fitting results of the impedance test verify that the magnetic field reduces the value of Rct.</p><p><strong>Conclusion: </strong>Both magnetic-field enhancing catalytic activity and CMR effect jointly promote the increase of photocurrent and finally improve the photovoltaic effect in DSSCs.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10339078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A systematic review and meta-analysis of the metal nano-particles loaded with herbal drugs moieties against breast cancer.","authors":"Suchitra Nishal, Virender Kumar, Parmita Phaugat, Davinder Kumar, Naveen Khatri, Gajendra Singh","doi":"10.2174/1872210518666230907115056","DOIUrl":"https://doi.org/10.2174/1872210518666230907115056","url":null,"abstract":"<p><p>Background - Breast cancer is the most prevalent cancer among women. About 685K deaths were globally listed in 2020 by the World Health Organization. Nowadays, scientists prefer to use herbal medicines due to their low toxicity. Herbal medicines are used to overcome the toxicity effects of surgical removal, radio-chemo therapy and medication, which have a lot of risk of damaging the healthy tissues. To overcome this, enhance bioavailability and target specify, nano-formulation chemotherapy was introduced using herbal moiety for anticancer activity. The use of metallic nanoparticles (MNPs), particularly those made of silver, cobalt, zinc, and gold as contrast, antibacterial, anticancer, and drug delivery agents has revolutionised the medicinal field. Although MNPs can be made via exacting physical and chemical processes, a biological method utilising natural materials has been established recently. Objective - This review article will offer a succinct explanation of the use of MNPs and its potential impact on herbal medicines in the future. Methods - Using PRISMA principles, this review systematically examines studies that concentrate on metal nanoparticles loaded with herbal compounds for the treatment of breast cancer. Various Databases were studied: PubMed, Elsevier, ScienceDirect, SpringerLink, Taylor & Francis Online, ACS Publications, Publishing Royal Society of Chemistry, and Future Medicines. Studies were selected if they were peer-reviewed primary studies published in the past 10 years. Results - We found that many herbal nano-formulations are more effective in breast cancer treatment than other types of formulations. Efficacy, safety and drug stability are also enhanced using nano-formulations. Conclusion - Nano-formulation is found to be more effective in the treatment of breast cancer.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10201749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nano-based therapeutics for Rheumatoid arthritis: Recent patents and development.","authors":"Manish Makhija, Deeksha Manchanda, Manu Sharma","doi":"10.2174/1872210518666230905155459","DOIUrl":"https://doi.org/10.2174/1872210518666230905155459","url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease marked by inflammation of synovium and generation of autoantibodies. Bone and cartilage are frequently damaged along with weakening of tendons and ligaments resulting in disability. An effective RA treatment needs a multi-disciplinary approach which relies upon pathophysiology that is still partially understood. In RA patients, inflammation was induced by pro-inflammatory cytokines including IL-1, IL-6 & IL-10. The conventional dosage regimens for treating RA have drawbacks such as ineffectiveness, greater doses, frequent dosing, relatively expensive and serious adverse effects. To formulate an effective treatment plan for RA, research teams have recently focused on producing several nanoformulations containing anti-inflammatory APIs with an aim to target the inflamed area. Nanomedicines have recently gained popularity in the treatment of RA. Interestingly, unbelievable improvements have been observed in current years in diagnosis and management of RA utilizing nanotechnology.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10199778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}