Recent Patents on Nanotechnology最新文献

筛选
英文 中文
Double Bubble Electrospinning: Patents and Nanoscale Interface. 双泡静电纺丝:专利与纳米级界面。
IF 2 4区 材料科学
Recent Patents on Nanotechnology Pub Date : 2025-01-01 DOI: 10.2174/0118722105259729231004040238
Muhammad Ali, Ya Li, Ji-Huan He
{"title":"Double Bubble Electrospinning: Patents and Nanoscale Interface.","authors":"Muhammad Ali, Ya Li, Ji-Huan He","doi":"10.2174/0118722105259729231004040238","DOIUrl":"10.2174/0118722105259729231004040238","url":null,"abstract":"<p><p><p>Background: Bipolymeric nanofibers have gained significant attention in various fields due to their enhanced functionality, improved mechanical properties, and controlled release capabilities. However, the fabrication of these composite fibers with a well-defined polymer-polymer interface remains a challenging task. </p> <p> Methods: The double bubble electrospinning setup was developed and simulated using Maxwell 3D to analyze the electric field. PVP and PVA polymers were electrospun simultaneously to create bipolymer nanofibers with an interface. The resulting nanofibers were compared with nanofibers made from pure PVA, PVP, and a PVA/PVP blend. The characterization of the nanofibers was performed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). </p> <p> Results: The SEM images showed the formation of PVA/PVP interfacial nanofibers aligned side by side, with a diameter of a few thousand nanometers on each side. By increasing the voltage from 20 kV to 40 kV during electrospinning, the diameter of the nanofibers on the PVA and PVP sides was successfully reduced by 60.8% and 66.3%, respectively. FTIR analysis confirmed the presence of both PVA and PVP in the bipolymeric interfacial nanofibers. TGA analysis demonstrated a weight retention of 14.28% compared to PVA, PVP, and the PVA/PVP blend even after degradation at 500°C. The Maxwell simulation of double bubble electrospinning revealed a stronger and more uniform electric field pattern at 40 kV compared to 20 kV. </p> <p> Conclusion: The study has demonstrated the potential of double bubble electrospinning for the fabrication of bipolymer nanofibers with an interface, opening new avenues and patents for the development of functional nanofibers.</p>.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":"453-465"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50159140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Solid to Fluid: Novel Approaches in Neuromorphic Engineering. 从固体到流体:神经形态工程的新方法。
IF 2 4区 材料科学
Recent Patents on Nanotechnology Pub Date : 2024-10-18 DOI: 10.2174/0118722105305259240919074119
Daniil Nikitin, Hynek Biederman, Andrei Choukourov
{"title":"From Solid to Fluid: Novel Approaches in Neuromorphic Engineering.","authors":"Daniil Nikitin, Hynek Biederman, Andrei Choukourov","doi":"10.2174/0118722105305259240919074119","DOIUrl":"https://doi.org/10.2174/0118722105305259240919074119","url":null,"abstract":"<p><p>Neuromorphic engineering is rapidly developing as an approach to mimicking processes in brains using artificial memristors, devices that change conductivity in response to the electrical field (resistive switching effect). Memristor-based neuromorphic systems can overcome the existing problems of slow and energy-inefficient computing that conventional processors face. In the Introduction, the basic principles of memristor operation and its applications are given. The history of switching in sandwich structures and granular metals is reviewed in the Historical Overview. Particular attention is paid to the fundamental articles from the pre-memristor era (the 1960s-70s), which demonstrated the first evidence of resistive switching and predicted the filamentary mechanism of switching. Multi-dimensionality in neuromorphic systems: Despite the powerful computational abilities of traditional memristor arrays, they cannot repeat many organizational characteristics of biological neural networks, i.e., their multi-dimensionality. This part reviews the unconventional nanowire- and nanoparticle-based neuromorphic systems that demonstrate incredible potential for use in reservoir computing due to the unique spiking change in conductance similar to firing in neurons. Liquid-based neuromorphic devices: The transition of neuromorphic systems from solid to liquid state broadens the possibilities for mimicking biological processes. In this section, ionic current memristors are reviewed and, the working principles of which bring us closer to the mechanisms of information transmittance in real synapses. Nanofluids: A novel direction in neuromorphic engineering linked to the application of nanofluids for the formation of reconfigurable nanoparticle networks with memristive properties is given in this section. The Conclusion t summarizes the bullet points of the Review and provides an outlook on the future of liquid-state neuromorphic systems.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulation Optimization and Evaluation of Patented Solid Lipid Nanoparticles of Ambrisentan for Pulmonary Arterial Hypertension. 用于肺动脉高压的专利固体脂质纳米颗粒的配方优化与评估
IF 2 4区 材料科学
Recent Patents on Nanotechnology Pub Date : 2024-10-01 DOI: 10.2174/0118722105302631240816115638
Harshada Shewale, Abhishek Kanugo
{"title":"Formulation Optimization and Evaluation of Patented Solid Lipid Nanoparticles of Ambrisentan for Pulmonary Arterial Hypertension.","authors":"Harshada Shewale, Abhishek Kanugo","doi":"10.2174/0118722105302631240816115638","DOIUrl":"https://doi.org/10.2174/0118722105302631240816115638","url":null,"abstract":"<p><strong>Background: </strong>Ambrisentan is a new endothelin receptor antagonist extensively used to manage pulmonary or pulmonary arterial hypertension.</p><p><strong>Objective: </strong>The therapeutic efficacy of Ambrisentan is limited due to its reduced solubility, higher log P (3.4), and thus less bioavailability. The recent investigation was concentrated on the improvement of solubility, and bioavailability of Ambrisentan for the therapy of hypertension via solid lipid nanoparticles (SLN) administered orally.</p><p><strong>Methods: </strong>XRD evaluated the compatibility of Ambrisentan with lipids with FTIR, DSC, and crystalline nature. The SLN was developed by High-pressure homogenization method. The Glyceryl monostearate and Tween 80 indicated the highest solubility, hence selected. The optimization was performed with Box-Behnken Design considering the concentration of GMS (X1), Tween 80 (X2), stirring speed (X3) as independent factors and particle size (Y1), entrapment efficiency (Y2) as dependent factors. The Patents on the SLN are Indian 202321053691, U.S. Patent, 10,973,798B2, U.S. Patent 10,251,960B2, U.S. Patent 2021/0069121A1 and U.S. Patent 2022/0151945A1.</p><p><strong>Results: </strong>The optimized batch F1 showed particle size (130 nm), ZP (-18.9 mV), and entrapment efficiency (85.73 %). The dual release pattern (prompt and sustained) was achieved with the SLNloaded Ambrisentan for about 24 hours. The lyophilized sample was subjected to SEM, which also revealed a spherical shape of a colloidal dispersion with a particle size of 126 nm. Hence, the F1 batch is highly recommended for solid oral delivery and also for the pilot-plant scale-up.</p><p><strong>Conclusion: </strong>A marked improvement in the solubility and dissolution of Ambrisentan was attained with the SLN. Moreover, the sustained delivery via the oral route enabled the patient's comfort, compliance, and therapeutic efficacy.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copper Electrodes Modified with Gold Nanoparticles Detect Two Hazardous Contaminants (As, Cd) in Raw Milk 用纳米金颗粒修饰的铜电极可检测生乳中的两种有害污染物(砷和镉
IF 2 4区 材料科学
Recent Patents on Nanotechnology Pub Date : 2024-08-13 DOI: 10.2174/0118722105316267240807072122
Upama Das, Nikhil Kumar Daimari, Khairul Islam, Rajib Biswas
{"title":"Copper Electrodes Modified with Gold Nanoparticles Detect Two Hazardous Contaminants (As, Cd) in Raw Milk","authors":"Upama Das, Nikhil Kumar Daimari, Khairul Islam, Rajib Biswas","doi":"10.2174/0118722105316267240807072122","DOIUrl":"https://doi.org/10.2174/0118722105316267240807072122","url":null,"abstract":"Background: Milk contamination has been a longstanding global concern, with Heavy Metals (HM) like lead (Pb), mercury (Hg), arsenic (As), and cadmium (Cd) posing significant risks. These contaminants often infiltrate milk through contaminated water sources or during pasteurization. This study introduces a novel approach to detecting milk contaminants by analyzing the current– voltage (IV) characteristics of copper (Cu) electrodes modified with gold nanoparticle (AuNPs). Methods: Leveraging the exceptional conductivity of metal nanoparticles, electrons freely traverse the surface, facilitating electron movement across the copper substrate. Additionally, the nanoparticles serve as binding agents, aiding in the comparative detection of contaminants. This method enables the preliminary detection of two HM (As, Cd) by evaluating their current gains in milk supernatant samples at varying concentrations. Results: AuNPs deposited on Cu electrodes exhibited a linear IV trend, with a significant increase in current compared to bare electrodes. Spiked milk supernatant drops cast on the electrode system displayed a current gain, which was evaluated towards sensing application of HM ions in milk. The synthesized AuNPs underwent initial characterization using a UV-Vis spectrophotometer, revealing a prominent plasmonic peak around 520 nm, confirming nanoparticle formation. X-Ray Diffraction (XRD) analysis confirmed the Face-Centred Cubic (FCC) crystal structure. Conclusion: Notably, different concentrations (1 and 10 ppm) and types of HM (As, Cd, Hg, and Pb) in milk supernatant yielded varying current gains, providing insights specifically targeting As and Cd contamination. conclusion: Notably, different concentrations and types of heavy metals in milk supernatant yielded varying current gains, providing insights into specific heavy metal contamination.","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":"34 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of TiO2 Nanoparticles Influence on Tensile Properties and Thermal Stability of Dry and Wet Luffa-Epoxy Nanocomposites 研究 TiO2 纳米粒子对干法和湿法丝瓜络-环氧树脂纳米复合材料拉伸性能和热稳定性的影响
IF 2 4区 材料科学
Recent Patents on Nanotechnology Pub Date : 2024-04-30 DOI: 10.2174/0118722105295445240418064351
K. Anbukarasi, D. Mala, N. Senthilkumar, S. Imran Hussain, S. Kalaiselvam
{"title":"Investigation of TiO2 Nanoparticles Influence on Tensile Properties and Thermal Stability of Dry and Wet Luffa-Epoxy Nanocomposites","authors":"K. Anbukarasi, D. Mala, N. Senthilkumar, S. Imran Hussain, S. Kalaiselvam","doi":"10.2174/0118722105295445240418064351","DOIUrl":"https://doi.org/10.2174/0118722105295445240418064351","url":null,"abstract":"Background: Recently, progress has been made toward understanding the efficiency of polymer composites with natural fibres. With the hope of enhancing the characteristics of polymer composites supplemented with natural fibres in a watery environment, TiO2 nanoparticles have been used to improve their performance in the field. Method: These nanoparticles were filled in luffa-epoxy components at 1, 3, and 5 % volume fractions. A combination of x-ray diffraction and Fourier transform infrared spectroscopy was utilized to conduct the structural examinations. The nanoparticle spread was captured by field emission scanning electron microscopy. Result: Results show that dry nanocomposite's tensile strength and modulus have increased by 74% and, 13%, 137%, and 50% compared with epoxy and 40 vol% luffa-epoxy [E/L] composites, respectively. In wet nanocomposites, maximum reduction in tensile strength and modulus were observed as 27.4% and 16.54%, respectively. The diminished water absorption and thickness swelling percentage of nanocomposites were recorded as 98% and 91.8%, respectively. The onset temperature of these nanocomposites was scattered in the range of 379-393°C, with a maximum char residue of 38%. method: For uniform dispersal of nanoparticles, an ultrasonicator is used, and for the fabrication of nanocomposite, hand layup is adopted. Testing of composites is done as per the ASTM guidelines Conclusion: The increase in the percentage of residue indicates the effectiveness of epoxy's flame retardant, improved thermal stability, diminished water absorption [approximately 2%], and 95% retention of wet composites' tensile properties. These results provided data support for improving the application of nanocomposites in the automobile field. result: The tensile strength and modulus of dry nTiO2 nanocomposite have increased by 74% and 13%, 137% and 50% compared with epoxy and 40 vol% luffa-epoxy (E/L) composites, respectively. In wet nanocomposites, maximum reduction in tensile strength and modulus were observed as 27.4% and 16.54%, respectively. Diminished water absorption and thickness swelling percentage of nanocomposites were recorded as 98% and 91.8%, respectively conclusion: • nTiO2-filled luffa-epoxy nanocomposites have a low percentage of water absorption. Because the nTiO2 effectively contributed to decreasing the hydrophilic nature of luffa fibers. other: The generated luffa-epoxy nanocomposites could serve as an eco-friendly substitute for petroleum-based plastics used in car interiors","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":"11 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review on the Upgradation of Biomass-derived Hard Carbon Materials 生物质硬碳材料升级综述
IF 2 4区 材料科学
Recent Patents on Nanotechnology Pub Date : 2024-04-13 DOI: 10.2174/0118722105287471240221094548
Tengrui Wang, Ruyan Li, Qian Liu, Weichi Liu
{"title":"A Review on the Upgradation of Biomass-derived Hard Carbon Materials","authors":"Tengrui Wang, Ruyan Li, Qian Liu, Weichi Liu","doi":"10.2174/0118722105287471240221094548","DOIUrl":"https://doi.org/10.2174/0118722105287471240221094548","url":null,"abstract":": Sodium-ion battery is a promising alternative to lithium-ion battery because of its abundant raw material resources, low price, and high specific capacity. Amorphous carbon materials (hard carbon) have micropores and impurities, facilitating the intercalation of sodium ions to form \"quasi-metallic sodium,\" resulting in a high sodium storage capacity and a low sodium storage potential. Consequently, hard carbon is one of the most widely studied negative electrode materials. It can be prepared from biomass by thermochemical conversion and has the advantages of large specific capacity, low cost, good cycling stability, and renewability. This review focuses on the recent advances in biomass-based hard carbon materials. Firstly, the preparation methods of hard carbon, including precursor selection, pretreatment, drying methods, and carbonization processes, are summarized. Secondly, the effects of precursor composition and heteroatom doping structure and properties of hard carbon are examined, and the changes in carbon material pores during the activation process, as well as the selection of optimal drying method, pyrolysis temperature, carbonization temperature, activator dosage, and additive, are discussed. Thirdly, the impact of preparation methods on hard carbon's cost, efficiency, and stability is briefly summarized, and the relevant improvement measures and prospects are proposed. Finally, some insights are provided into preparing highperformance biomass-based anode materials for sodium-ion batteries.","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":"61 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulation of Solid Lipid Nanoparticles Loaded with Rosiglitazone and Probiotic: Optimization and In-vitro Characterization 含罗格列酮和益生菌的固体脂质纳米颗粒的制备:优化与体外表征
IF 2 4区 材料科学
Recent Patents on Nanotechnology Pub Date : 2024-02-02 DOI: 10.2174/0118722105268801231203144554
Nitish Kumar, Nidhi Tyagi, Sidharth Mehan, Alok Pratap Singh
{"title":"Formulation of Solid Lipid Nanoparticles Loaded with Rosiglitazone and Probiotic: Optimization and In-vitro Characterization","authors":"Nitish Kumar, Nidhi Tyagi, Sidharth Mehan, Alok Pratap Singh","doi":"10.2174/0118722105268801231203144554","DOIUrl":"https://doi.org/10.2174/0118722105268801231203144554","url":null,"abstract":"Introduction: In the present study, solid lipid nanoparticles loaded with Rosiglitazone and probiotics were prepared via solvent emulsification diffusion. As a lipid and surfactant, Gleceryl monostearate and Pluronic -68 were used in the formulation process. background: Nanotechnology is essential for developing novel methods for transporting potentially therapeutic and symptomatic substances to specific regions of the central nervous system. Since these formulations reduce the long-term adverse effects associated with the aberrant distribution of medications, they increase the drug concentration at the site of action, thereby enhancing therapeutic efficacy. Method: During characterization, it was determined that ingredient quantity variations significantly impacted Rosiglitazone loading capacity, particle size, polydispersity index, etc. In an optimized formulation of RSG-PB loaded SLNs, spherical particles with a mean particle size of 147.66±1.52 nm, PDI of 0.42±0.02, and loading capacity of 45.36±0.20 were identified. Result: Moreover, the developed SLNs had the potential to discharge the drug for up to 24 hours, as predicted by Higuchi's pharmacokinetic model. The SLNs were stable at 25⁰C/60%RH for up to 60 days. There was little to no change in particle size, PDI, or loading capacity. In addition, the number of probiotic bacteria was determined using the standard plate count procedure. Further, the antioxidant effect of the prepared formulation is evaluated using the DPPH assay method. Conclusion: This study concludes that the method used to fabricate RSG-probiotic-loaded SLNs is straightforward and yields favorable results regarding various parameters, including sustained release property, particle size, PDI, and percent drug loading stability. Furthermore, DPPH radical scavenging activity shows the high antioxidant potential of RSG-PB SLNs when compared to RSG and probiotics alone.","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":"10 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139662459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WITHDRAWN: Wheatgrass (Triticum aestivum) Extract Loaded Chitosan Solid Lipid Nanoparticles: Formulation, Physicochemical Characterisation and Cytotoxic Potential 小麦草(Triticum Aestivum)提取物负载壳聚糖固体脂质纳米颗粒:配方、理化特性和细胞毒性潜力。
IF 2 4区 材料科学
Recent Patents on Nanotechnology Pub Date : 2024-01-10 DOI: 10.2174/0118722105270861231128081639
Neha Minocha, Parijat Pandey, Nidhi Sharma, Sangita Saini
{"title":"WITHDRAWN: Wheatgrass (Triticum aestivum) Extract Loaded Chitosan Solid Lipid Nanoparticles: Formulation, Physicochemical Characterisation and Cytotoxic Potential","authors":"Neha Minocha, Parijat Pandey, Nidhi Sharma, Sangita Saini","doi":"10.2174/0118722105270861231128081639","DOIUrl":"10.2174/0118722105270861231128081639","url":null,"abstract":"<p><p>Since the content of the article shows a high degree of similarity to a previously published work by the same group of authors, the article has been withdrawn from the journal Recent Patents on Nanotechnology with the consent of the Editor-in-Chief.</p><p><p>Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.</p><p><p>The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policiesmain.php</p><p><strong>Bentham science disclaimer: </strong>It is a condition of publication that manuscripts submitted to this journal have not been published and will not be\u0000simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139425837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imaging and Non-imaging Analytical Techniques Used for Drug Nanosizing and their Patents: An Overview. 用于药物纳米化的成像和非成像分析技术及其专利综述。
IF 2 4区 材料科学
Recent Patents on Nanotechnology Pub Date : 2024-01-01 DOI: 10.2174/0118722105243388230920013508
Vijay Agarwal, Meenakshi Bajpai
{"title":"Imaging and Non-imaging Analytical Techniques Used for Drug Nanosizing and their Patents: An Overview.","authors":"Vijay Agarwal, Meenakshi Bajpai","doi":"10.2174/0118722105243388230920013508","DOIUrl":"10.2174/0118722105243388230920013508","url":null,"abstract":"<p><strong>Background: </strong>Nanosizing is widely recognized as an effective technique for improving the solubility, dissolution rate, onset of action, and bioavailability of poorly water-soluble drugs. To control the execution and behavior of the output product, more advanced and valuable analytical techniques are required.</p><p><strong>Objective: </strong>The primary intent of this review manuscript was to furnish the understanding of imaging and non-imaging techniques related to nanosizing analysis by focusing on related patents. In addition, the study also aimed to collect and illustrate the information on various classical (laser diffractometry, photon correlation spectroscopy, zeta potential, laser Doppler electrophoresis, X-ray diffractometry, differential scanning calorimeter, scanning electron microscopy, transmission electron microscopy), new, and advanced analytical techniques (improved dynamic light scattering method, Brunauer-Emmett- Teller method, ultrasonic attenuation, biosensor), as well as commercial techniques, like inductively coupled plasma mass spectroscopy, aerodynamic particle sizer, scanning mobility particle sizer, and matrix- assisted laser desorption/ionization mass spectroscopy, which all relate to nano-sized particles.</p><p><strong>Methods: </strong>The present manuscript has taken a fresh look at the various aspects of the analytical techniques utilized in the process of nanosizing, and has achieved this through the analysis of a wide range of peer-reviewed literature. All summarized literature studies provide the information that can meet the basic needs of nanotechnology.</p><p><strong>Results: </strong>A variety of analytical techniques related to the nanosizing process have already been established and have great potential to weed out several issues. However, the current scenarios require more relevant, accurate, and advanced analytical techniques that can minimize the time and deviations associated with different instrumental and process parameters. To meet this requirement, some new and more advanced analytical techniques have recently been discovered, like ultrasonic attenuation technique, BET technique, biosensors, etc. Conclusion: The present overview certifies the significance of different analytical techniques utilized in the nanosizing process. The overview also provides information on various patents related to sophisticated analytical tools that can meet the needs of such an advanced field. The data show that the nanotechnology field will flourish in the coming future.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":"494-518"},"PeriodicalIF":2.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89720162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanocrystal Materials for Resistive Memory and Artificial Synapses: Progress and Prospects. 用于电阻记忆和人工突触的纳米晶体材料:进展与前景》。
IF 2 4区 材料科学
Recent Patents on Nanotechnology Pub Date : 2024-01-01 DOI: 10.2174/1872210517666230413092108
Yingchun Chen, Dunkui Chen, Chi Zhang, Xian Zhang
{"title":"Nanocrystal Materials for Resistive Memory and Artificial Synapses: Progress and Prospects.","authors":"Yingchun Chen, Dunkui Chen, Chi Zhang, Xian Zhang","doi":"10.2174/1872210517666230413092108","DOIUrl":"10.2174/1872210517666230413092108","url":null,"abstract":"<p><strong>Background: </strong>Resistive random-access memory (RRAM) is considered to be the most promising next-generation non-volatile memory because of its low cost, low energy consumption, and excellent data storage characteristics. However, the on/off (SET/RESET) voltages of RRAM are too random to replace the traditional memory. Nanocrystals (NCs) offer an appealing option for these applications since they combine excellent electronic/optical properties and structural stability and can address the requirements of low-cost, large-area, and solution-processed technologies. Therefore, the doping NCs in the function layer of RRAM are proposed to localize the electric field and guide conductance filaments (CFs) growth.</p><p><strong>Objective: </strong>The purpose of this article is to focus on a comprehensive and systematical survey of the NC materials, which are used to improve the performance of resistive memory (RM) and optoelectronic synaptic devices and review recent experimental advances in NC-based neuromorphic devices from artificial synapses to light-sensory synaptic platforms.</p><p><strong>Methods: </strong>Extensive information related to NCs for RRAM and artificial synapses and their associated patents were collected. This review aimed to highlight the unique electrical and optical features of metal and semiconductor NCs for designing future RRAM and artificial synapses.</p><p><strong>Results: </strong>It was demonstrated that doping NCs in the function layer of RRAM could not only improve the homogeneity of SET/RESET voltage but also reduce the threshold voltage. At the same time, it could still increase the retention time and provide the probability of mimicking the bio-synapse.</p><p><strong>Conclusion: </strong>NC doping can significantly enhance the overall performance of RM devices, but there are still many problems to be solved. This review highlights the relevance of NCs for RM and artificial synapses and also provides a perspective on the opportunities, challenges, and potential future directions.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":"237-255"},"PeriodicalIF":2.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9687973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信