K. Anbukarasi, D. Mala, N. Senthilkumar, S. Imran Hussain, S. Kalaiselvam
{"title":"Investigation of TiO2 Nanoparticles Influence on Tensile Properties and Thermal Stability of Dry and Wet Luffa-Epoxy Nanocomposites","authors":"K. Anbukarasi, D. Mala, N. Senthilkumar, S. Imran Hussain, S. Kalaiselvam","doi":"10.2174/0118722105295445240418064351","DOIUrl":null,"url":null,"abstract":"Background: Recently, progress has been made toward understanding the efficiency of polymer composites with natural fibres. With the hope of enhancing the characteristics of polymer composites supplemented with natural fibres in a watery environment, TiO2 nanoparticles have been used to improve their performance in the field. Method: These nanoparticles were filled in luffa-epoxy components at 1, 3, and 5 % volume fractions. A combination of x-ray diffraction and Fourier transform infrared spectroscopy was utilized to conduct the structural examinations. The nanoparticle spread was captured by field emission scanning electron microscopy. Result: Results show that dry nanocomposite's tensile strength and modulus have increased by 74% and, 13%, 137%, and 50% compared with epoxy and 40 vol% luffa-epoxy [E/L] composites, respectively. In wet nanocomposites, maximum reduction in tensile strength and modulus were observed as 27.4% and 16.54%, respectively. The diminished water absorption and thickness swelling percentage of nanocomposites were recorded as 98% and 91.8%, respectively. The onset temperature of these nanocomposites was scattered in the range of 379-393°C, with a maximum char residue of 38%. method: For uniform dispersal of nanoparticles, an ultrasonicator is used, and for the fabrication of nanocomposite, hand layup is adopted. Testing of composites is done as per the ASTM guidelines Conclusion: The increase in the percentage of residue indicates the effectiveness of epoxy's flame retardant, improved thermal stability, diminished water absorption [approximately 2%], and 95% retention of wet composites' tensile properties. These results provided data support for improving the application of nanocomposites in the automobile field. result: The tensile strength and modulus of dry nTiO2 nanocomposite have increased by 74% and 13%, 137% and 50% compared with epoxy and 40 vol% luffa-epoxy (E/L) composites, respectively. In wet nanocomposites, maximum reduction in tensile strength and modulus were observed as 27.4% and 16.54%, respectively. Diminished water absorption and thickness swelling percentage of nanocomposites were recorded as 98% and 91.8%, respectively conclusion: • nTiO2-filled luffa-epoxy nanocomposites have a low percentage of water absorption. Because the nTiO2 effectively contributed to decreasing the hydrophilic nature of luffa fibers. other: The generated luffa-epoxy nanocomposites could serve as an eco-friendly substitute for petroleum-based plastics used in car interiors","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":"11 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/0118722105295445240418064351","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Recently, progress has been made toward understanding the efficiency of polymer composites with natural fibres. With the hope of enhancing the characteristics of polymer composites supplemented with natural fibres in a watery environment, TiO2 nanoparticles have been used to improve their performance in the field. Method: These nanoparticles were filled in luffa-epoxy components at 1, 3, and 5 % volume fractions. A combination of x-ray diffraction and Fourier transform infrared spectroscopy was utilized to conduct the structural examinations. The nanoparticle spread was captured by field emission scanning electron microscopy. Result: Results show that dry nanocomposite's tensile strength and modulus have increased by 74% and, 13%, 137%, and 50% compared with epoxy and 40 vol% luffa-epoxy [E/L] composites, respectively. In wet nanocomposites, maximum reduction in tensile strength and modulus were observed as 27.4% and 16.54%, respectively. The diminished water absorption and thickness swelling percentage of nanocomposites were recorded as 98% and 91.8%, respectively. The onset temperature of these nanocomposites was scattered in the range of 379-393°C, with a maximum char residue of 38%. method: For uniform dispersal of nanoparticles, an ultrasonicator is used, and for the fabrication of nanocomposite, hand layup is adopted. Testing of composites is done as per the ASTM guidelines Conclusion: The increase in the percentage of residue indicates the effectiveness of epoxy's flame retardant, improved thermal stability, diminished water absorption [approximately 2%], and 95% retention of wet composites' tensile properties. These results provided data support for improving the application of nanocomposites in the automobile field. result: The tensile strength and modulus of dry nTiO2 nanocomposite have increased by 74% and 13%, 137% and 50% compared with epoxy and 40 vol% luffa-epoxy (E/L) composites, respectively. In wet nanocomposites, maximum reduction in tensile strength and modulus were observed as 27.4% and 16.54%, respectively. Diminished water absorption and thickness swelling percentage of nanocomposites were recorded as 98% and 91.8%, respectively conclusion: • nTiO2-filled luffa-epoxy nanocomposites have a low percentage of water absorption. Because the nTiO2 effectively contributed to decreasing the hydrophilic nature of luffa fibers. other: The generated luffa-epoxy nanocomposites could serve as an eco-friendly substitute for petroleum-based plastics used in car interiors
期刊介绍:
Recent Patents on Nanotechnology publishes full-length/mini reviews and research articles that reflect or deal with studies in relation to a patent, application of reported patents in a study, discussion of comparison of results regarding application of a given patent, etc., and also guest edited thematic issues on recent patents in the field of nanotechnology. A selection of important and recent patents on nanotechnology is also included in the journal. The journal is essential reading for all researchers involved in nanotechnology.