Muffarih Shah, Noor Majeed, Asif Ali, Abdul Hameed, Touseef Rehan, Nasrullah Shah
{"title":"Bibliometric Analysis of Single-Atom Catalysis: A Scoping Review.","authors":"Muffarih Shah, Noor Majeed, Asif Ali, Abdul Hameed, Touseef Rehan, Nasrullah Shah","doi":"10.2174/0118722105347268250206063445","DOIUrl":"https://doi.org/10.2174/0118722105347268250206063445","url":null,"abstract":"<p><strong>Background: </strong>Single-Atom Catalysts (SACs) are heterogeneous catalysts that demonstrate exceptional efficiency and selectivity due to the use of individual metal atoms at the atomic scale. The substantial number of patents filed on SACs underscore their commercial and technological importance, highlighting their potential across various industries. SACs are increasingly applied in areas such as energy generation, environmental applications, and chemical synthesis, reflecting their growing scientific and technical importance.</p><p><strong>Objectives: </strong>The objective of this study was to conduct a comprehensive evaluation of existing literature on SACs and the use of bibliometric analysis to identify scientific output and topic patterns of research on SACs.</p><p><strong>Methods: </strong>A bibliometric analysis was performed on 488 papers related to SACs, utilizing the Web of Science database of data collection. Analysis of Co-occurrence of keywords, trending research topics, Citation analysis, Publication areas, the five-year record of Publications, and funding sources were examined using VOS viewer, R software, and Microsoft Excel.</p><p><strong>Results: </strong>The analysis indicates a steady growth in publication on SACs in recent years, with China leading in research output followed closely by the USA. The highlighting of the global impact and the collaborative nature of SAC research. The study reveals a diverse range of applications and emphasizes the increasing scientific and technical focus on this subject.</p><p><strong>Conclusion: </strong>This study highlights the essential role of SACs in advancing catalytic science and maps key trends, collaborations, and applications within the field. The bibliometric insights provide valuable guidance for the researchers, pointing to potential applications in energy storage, environmental remediation, and sustainable chemical synthesis. Emerging challenges, such as stability, scalability, and the development of new materials, call for further investigation to unlock the full potential of SACs. These insights support future innovation and exploration in the expanding field of SAC research.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143494501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in Neuromorphic Computing Devices: Insights on Both Conventional and Unconventional Architectures.","authors":"Davide Decastri, Francesca Borghi","doi":"10.2174/0118722105335459241210043513","DOIUrl":"https://doi.org/10.2174/0118722105335459241210043513","url":null,"abstract":"<p><p>Neuromorphic circuits and devices have been introduced in the last decades as elements of a key strategy for developing of new paradigms of computation, inspired by the intent to mimic elementary neuron structure and biological mechanisms, for the overcoming of energy and timeconsuming bottlenecks achieved by digital computing (DC) technologies. Although the term \"neuromorphic\" is in common use, its meaning is often misunderstood and indistinctly associated with many different technologies, based on both conventional and unconventional electronic components and architectures. Here an overview of the different technological strategies used for developing neuromorphic computing systems is proposed, with an insight on the neuromorphic features they implement and a special focus on the technological strategies and patents that exploit unconventional computing paradigms.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introduction to Memristive Mechanisms and Models.","authors":"Davide Cipollini, Lambert Schomaker","doi":"10.2174/0118722105327900250115102034","DOIUrl":"https://doi.org/10.2174/0118722105327900250115102034","url":null,"abstract":"<p><p>The increase in computational power demand led by the development of Artificial Intelligence is rapidly becoming unsustainable. New paradigms of computation, which potentially differ from digital computation, together with novel hardware architecture and devices, are anticipated to reduce the exorbitant energy demand for data-processing tasks. Memristive systems with resistive switching behavior are under intense research, given their prominent role in the fabrication of memory devices that promise the desired hardware revolution in our intensive data-driven era. They are suggested to provide the hardware substrate to scale up computational capabilities while improving their energy expenditure and speed. This work provides an orientation map for those interested in the vast topic of memristive systems with application to neuromorphic computing. We address the description of the most notable emerging devices and we illustrate models that capture the complex dynamical behavior of these systems under the dynamical-systems framework developed by Chua. We then review the memristive behavior under the perspective of statistical physics and percolation theory suited to describe fluctuations and disorder which are otherwise precluded in the dynamical-system approach. Percolation theory allows the investigation of these systems at the mesoscopic level, enabling material-independent modeling of non-linear conductance networks. We finally discuss recent and less recent successes in deep learning methods that bridge the field of physics-based and biological- inspired neuromorphic computing.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vijai Meyyappan Moorthy, R Venkatesan, Viranjay M Srivastava
{"title":"Fabrication with Characterization of Single-Walled Carbon Nanotube Thin Film Transistor (CNT-TFT) by Spin Coating Method for Flat Panel Display.","authors":"Vijai Meyyappan Moorthy, R Venkatesan, Viranjay M Srivastava","doi":"10.2174/0118722105318225241021042955","DOIUrl":"https://doi.org/10.2174/0118722105318225241021042955","url":null,"abstract":"<p><strong>Background: </strong>Thin Film Transistors (TFTs) are increasingly prevalent electrical components in display products, ranging from smartphones to diagonal flat panel TVs. The limitations in existing TFT technologies, such as high-temperature processing, carrier mobility, lower ON/OFF ratio, device mobility, and thermal stability, result in the search for new semiconductor materials with superior properties.</p><p><strong>Objective: </strong>The main objective of this present work is to fabrícate the efficient Single-Walled Carbon Nanotube Thin Film Transistor (TFT) for flat panel display.</p><p><strong>Methods: </strong>Carbon Nano-Tubes (CNTs) are a promising semiconductor material for TFT devices due to their one-dimensional structure and exceptional characteristics. In this research work, the CNTTFTs have been fabricated using nano-fabrication techniques with a spin process. The fabricated devices have been characterized for structural, morphological, and electrical characteristics.</p><p><strong>Results: </strong>The 20 μm channel length and 30 μm channel width fabricated device produces about 1.3 nA, which lies in the practical range of operating TFTs reported previously. Compared to reported patents and published works, this demonstrates a significant improvement.</p><p><strong>Conclusion: </strong>Further guidelines and limitations of this fabrication method are also discussed for future efficient device fabrication.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of Stabilized and Aqueous Dissolvable Nanosuspension Encompassing BCS Class IV Drug via Optimization of Process and Formulation Variables.","authors":"Surya Goel, Vijay Agarwal, Monika Sachdeva","doi":"10.2174/0118722105317594241025052905","DOIUrl":"https://doi.org/10.2174/0118722105317594241025052905","url":null,"abstract":"<p><strong>Background: </strong>Nanosuspension has emerged as an effective, lucrative, and unequalled approach for efficiently elevating the dissolution and bioavailability of aqueous soluble drugs. Diverse challenges persist within this domain, demanding further comprehensive investigation and exploration.</p><p><strong>Objective: </strong>This study aims to design, develop, optimise formulation and process variables, and characterise the stabilised aqueous dissolvable nanosuspension using chlorthalidone as a BCS class- IV drug.</p><p><strong>Methods: </strong>Nanosuspensions of the chlorthalidone drug were prepared using a combination of topdown and bottom-up approaches. Various polymers such as Pluronic L-64, F-68, F-127, and Synperonic F-108 were used as stabilisers in this research. All important processes and formulation variables, such as ultrasonication intensity and time, the concentration of the drug, organic solvent, and stabilisers that may critically influence the characteristics of the nanosuspensions, were optimised. Formulation screening was performed using the optimisation of process and formulation variables, and the optimised nanosuspension formulation was assessed for particle size, PDI, surface charge, morphology, in vitro drug release, and stability.</p><p><strong>Results: </strong>To select an optimised nanosuspension formulation, the effects of formulation and process variables were investigated. These variables critically influence the development of a stabilised nanosuspension. The outcomes revealed that the nanosuspension formulation containing pluronic F- 68 as a stabiliser in 0.6% w/v concentration and the drug in 4 mg/ml concentration were optimized. The particle size and zeta potential of the optimised preparation were 110 nm and -27.5 mV, respectively. The in-vitro drug release of chlorthalidone drug from the optimised nanoformulation was increased up to 3-fold, approximately (88% in 90 min) compared with pure chlorthalidone drug (27% in 90 min) because of the decrease in particle size. Moreover, stability studies indicated that the crafted nanoformulation was stable at cold (4℃) as well as normal room temperature (25℃) for six months.</p><p><strong>Conclusion: </strong>From the obtained results, it was concluded that the combination of top-down and bottom- up approaches employed for the fabrication of oral nanosuspension is a remunerative and lucrative approach to successfully resolve the perplexities associated with the dissolution rate of poorly aqueous soluble BCS class-IV drug moieties such as chlorthalidone.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142980463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on Controllable Synthesis and Growth Mechanism of Sodium Vanadium Fluorophosphate Nanosheets.","authors":"Xinran Yuan, Aijun Teng, Tianhao Liu, Yadong Yang, Yanan Xin, Lingling Yong, Dongbin Zhang","doi":"10.2174/0118722105340055241022051936","DOIUrl":"https://doi.org/10.2174/0118722105340055241022051936","url":null,"abstract":"<p><strong>Background: </strong>Sodium vanadium fluorophosphate is a sodium ion superconductor material with high sodium ion mobility and excellent cyclic stability, making it a promising cathode material for sodium-ion batteries. However, most of the literature and patents report preparation through traditional methods, which involve complex processes, large particle sizes, and low electronic conductivity, thereby limiting development progress.</p><p><strong>Objective: </strong>Aiming at the limitation of high cost and poor performance of vanadium sodium fluorophosphate cathode material, the low temperature and high-efficiency nano preparation technology was developed.</p><p><strong>Methods: </strong>This study uses a homogenizer with high dispersion and shear force to directionally control the collision of sodium vanadium fluorophosphate nanoparticles with higher specific surface energy during the initial nucleation stage, forming nanosheet structures.</p><p><strong>Results: </strong>The growth mechanism of these nanosheets was analyzed using SEM, XRD, AFM, and DFT simulation. Results indicate that the crystal surfaces with higher surface energy undergo directional collisions in the early nucleation stage, gradually reducing the surface energy and stabilizing the system, resulting in sodium vanadium fluorophosphate nanosheets.</p><p><strong>Conclusion: </strong>Due to the larger specific surface area and pore structure, these nanosheets exhibit excellent rate performance and cycle stability, making them suitable for application and promotion in the field of fast-charging energy storage.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142957642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of Nanotechnology in the Treatment of Life-Threating Diseases.","authors":"Parijat Pandey","doi":"10.2174/187221051901241111164122","DOIUrl":"https://doi.org/10.2174/187221051901241111164122","url":null,"abstract":"","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":"19 1","pages":"2-3"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143434147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Applications of Nanomedicine in Brain Tumor Therapy: Nanocarrierbased Drug Delivery Platforms, Challenges, and Perspectives.","authors":"Ravinder Verma, Lakshita Rao, Harish Kumar, Nitin Bansal, Aakash Deep, Jatin Parashar, Manish Yadav, Vineet Mittal, Deepak Kaushik","doi":"10.2174/0118722105244482231017102857","DOIUrl":"10.2174/0118722105244482231017102857","url":null,"abstract":"<p><strong>Background: </strong>The most difficult kind of cancer to treat is brain cancer, which causes around 3% of all cancer-related deaths. The targeted delivery is improved with the use of technologies based on nanotechnology that are both safe and efficient. Because of this, there is now a lot of research being done on brain cancer treatments based on nanoformulations.</p><p><strong>Objective: </strong>In this review, the author's primary aim is to elucidate the various nanomedicine for brain cancer therapy. The authors focus primarily on the advancement of nanotechnology in treating brain cancer (BC). This review article gives readers an up-to-date look at publications on sophisticated nanosystems in treating BC, including quantum dots (QDs), nanoparticles (NPs), polymeric micelles (PMs), dendrimers, and solid lipid nanoparticles (SLNs), among others. This article offers insight into the use of various nanotechnology-based systems for therapy as well as their potential in the future. This article also emphasizes the drawbacks of nanotechnology-based methods. Future perspectives for treating brain cancer using proteomics and biomimetic nanosystems are briefly discussed.</p><p><strong>Conclusion: </strong>In this review, we review several aspects of brain cancer therapy, including various nanomedicines, their challenges and future perspectives. Overall, this article gives a thorough overview of both the present state of brain cancer treatment options and the disease itself. Various patents granted for brain cancer are also discussed.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":"99-119"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71488001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Untangling Breast Cancer: Trailing Towards Nanoformulations-based Drug Development.","authors":"Ravinder Verma, Kuldeep Kumar, Shailendra Bhatt, Manish Yadav, Manish Kumar, Priti Tagde, P S Rajinikanth, Abhishek Tiwari, Varsha Tiwari, Diksha Nagpal, Vineet Mittal, Deepak Kaushik","doi":"10.2174/1872210517666230731091046","DOIUrl":"10.2174/1872210517666230731091046","url":null,"abstract":"<p><p>All over the world, cancer death and prevalence are increasing. Breast cancer (BC) is the major cause of cancer mortality (15%) which makes it the most common cancer in women. BC is defined as the furious progression and quick division of breast cells. Novel nanotechnology-based approaches helped in improving survival rate, metastatic BC is still facing obstacles to treat with an expected overall 23% survival rate. This paper represents epidemiology, classification (non-invasive, invasive and metastatic), risk factors (genetic and non-genetic) and treatment challenges of breast cancer in brief. This review paper focus on the importance of nanotechnology-based nanoformulations for treatment of BC. This review aims to deliver elementary insight and understanding of the novel nanoformulations in BC treatment and to explain to the readers for enduring designing novel nanomedicine. Later, we elaborate on several types of nanoformulations used in tumor therapeutics such as liposomes, dendrimers, polymeric nanomaterials and many others. Potential research opportunities for clinical application and current challenges related to nanoformulations utility for the treatment of BC are also highlighted in this review. The role of artificial intelligence is elaborated in detail. We also confer the existing challenges and perspectives of nanoformulations in effective tumor management, with emphasis on the various patented nanoformulations approved or progression of clinical trials retrieved from various search engines.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":"76-98"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9898278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ritu Karwasra, Shivkant Sharma, Isha Sharma, Nida Shahid, Tarana Umar
{"title":"Diabetology and Nanotechnology: A Compelling Combination.","authors":"Ritu Karwasra, Shivkant Sharma, Isha Sharma, Nida Shahid, Tarana Umar","doi":"10.2174/0118722105253055231016155618","DOIUrl":"10.2174/0118722105253055231016155618","url":null,"abstract":"<p><p>The convergence of diabetology and nanotechnology has emerged as a promising synergy with the potential to revolutionize the management and treatment of diabetes mellitus. Diabetes, a complex metabolic disorder affecting millions worldwide, necessitates innovative approaches to enhance monitoring, diagnosis, and therapeutic interventions. Nanotechnology, a burgeoning field that manipulates materials at the nanoscale, offers unprecedented opportunities to address the challenges posed by diabetes. This abstract explores the multifaceted interface between diabetology and nanotechnology, highlighting key areas of integration. Nanotechnology has paved the way for the development of advanced glucose monitoring systems with enhanced accuracy, sensitivity, and patient convenience. Miniaturized biosensors and implantable devices equipped with nanoscale materials enable continuous and real-time glucose monitoring, empowering individuals with diabetes to make timely and informed decisions about their dietary and insulin management. Furthermore, nanotechnology has facilitated breakthroughs in targeted drug delivery, addressing the limitations of conventional therapies in diabetes treatment. Nano-sized drug carriers can improve bioavailability, enable controlled release, and enhance the selectivity of therapeutic agents, minimizing side effects and optimizing treatment outcomes. Moreover, nanoengineered materials have opened avenues for tissue engineering and regenerative medicine, offering the potential to restore damaged pancreatic islets and insulin-producing cells. The amalgamation of diabetology and nanotechnology also holds promise for early disease detection and prevention. Nanoscale diagnostic tools, such as biomarker-based nanoprobes and lab-onchip devices, offer rapid and accurate detection of diabetes-related biomolecules, enabling timely interventions and reducing the risk of complications. However, this compelling combination also presents challenges that warrant careful consideration. Safety, biocompatibility, regulatory approval, and ethical implications are crucial factors that demand meticulous evaluation during the translation of nanotechnology-based solutions into clinical practice. In conclusion, the integration of diabetology and nanotechnology represents a transformative paradigm that has the potential to reshape the landscape of diabetes management. By harnessing the unique properties of nanoscale materials, researchers and clinicians are poised to usher in an era of personalized and precise diagnostics, therapeutics, and preventive strategies for diabetes mellitus. As advancements in nanotechnology continue to unfold, the journey towards realizing the full potential of this compelling combination remains an exciting frontier in medical science. This review has thoroughly and critically studied the usage of nanomedicine in the diagnosis, monitoring, and management of diabetes and its effects, providing a clear picture of their pot","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":"4-16"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71488002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}