{"title":"Formulation Optimization and Evaluation of Patented Solid Lipid Nanoparticles of Ambrisentan for Pulmonary Arterial Hypertension.","authors":"Harshada Shewale, Abhishek Kanugo","doi":"10.2174/0118722105302631240816115638","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ambrisentan is a new endothelin receptor antagonist extensively used to manage pulmonary or pulmonary arterial hypertension.</p><p><strong>Objective: </strong>The therapeutic efficacy of Ambrisentan is limited due to its reduced solubility, higher log P (3.4), and thus less bioavailability. The recent investigation was concentrated on the improvement of solubility, and bioavailability of Ambrisentan for the therapy of hypertension via solid lipid nanoparticles (SLN) administered orally.</p><p><strong>Methods: </strong>XRD evaluated the compatibility of Ambrisentan with lipids with FTIR, DSC, and crystalline nature. The SLN was developed by High-pressure homogenization method. The Glyceryl monostearate and Tween 80 indicated the highest solubility, hence selected. The optimization was performed with Box-Behnken Design considering the concentration of GMS (X1), Tween 80 (X2), stirring speed (X3) as independent factors and particle size (Y1), entrapment efficiency (Y2) as dependent factors. The Patents on the SLN are Indian 202321053691, U.S. Patent, 10,973,798B2, U.S. Patent 10,251,960B2, U.S. Patent 2021/0069121A1 and U.S. Patent 2022/0151945A1.</p><p><strong>Results: </strong>The optimized batch F1 showed particle size (130 nm), ZP (-18.9 mV), and entrapment efficiency (85.73 %). The dual release pattern (prompt and sustained) was achieved with the SLNloaded Ambrisentan for about 24 hours. The lyophilized sample was subjected to SEM, which also revealed a spherical shape of a colloidal dispersion with a particle size of 126 nm. Hence, the F1 batch is highly recommended for solid oral delivery and also for the pilot-plant scale-up.</p><p><strong>Conclusion: </strong>A marked improvement in the solubility and dissolution of Ambrisentan was attained with the SLN. Moreover, the sustained delivery via the oral route enabled the patient's comfort, compliance, and therapeutic efficacy.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/0118722105302631240816115638","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Ambrisentan is a new endothelin receptor antagonist extensively used to manage pulmonary or pulmonary arterial hypertension.
Objective: The therapeutic efficacy of Ambrisentan is limited due to its reduced solubility, higher log P (3.4), and thus less bioavailability. The recent investigation was concentrated on the improvement of solubility, and bioavailability of Ambrisentan for the therapy of hypertension via solid lipid nanoparticles (SLN) administered orally.
Methods: XRD evaluated the compatibility of Ambrisentan with lipids with FTIR, DSC, and crystalline nature. The SLN was developed by High-pressure homogenization method. The Glyceryl monostearate and Tween 80 indicated the highest solubility, hence selected. The optimization was performed with Box-Behnken Design considering the concentration of GMS (X1), Tween 80 (X2), stirring speed (X3) as independent factors and particle size (Y1), entrapment efficiency (Y2) as dependent factors. The Patents on the SLN are Indian 202321053691, U.S. Patent, 10,973,798B2, U.S. Patent 10,251,960B2, U.S. Patent 2021/0069121A1 and U.S. Patent 2022/0151945A1.
Results: The optimized batch F1 showed particle size (130 nm), ZP (-18.9 mV), and entrapment efficiency (85.73 %). The dual release pattern (prompt and sustained) was achieved with the SLNloaded Ambrisentan for about 24 hours. The lyophilized sample was subjected to SEM, which also revealed a spherical shape of a colloidal dispersion with a particle size of 126 nm. Hence, the F1 batch is highly recommended for solid oral delivery and also for the pilot-plant scale-up.
Conclusion: A marked improvement in the solubility and dissolution of Ambrisentan was attained with the SLN. Moreover, the sustained delivery via the oral route enabled the patient's comfort, compliance, and therapeutic efficacy.
期刊介绍:
Recent Patents on Nanotechnology publishes full-length/mini reviews and research articles that reflect or deal with studies in relation to a patent, application of reported patents in a study, discussion of comparison of results regarding application of a given patent, etc., and also guest edited thematic issues on recent patents in the field of nanotechnology. A selection of important and recent patents on nanotechnology is also included in the journal. The journal is essential reading for all researchers involved in nanotechnology.