Riaz Ur Rehman Mohammed, Vedad Bassari, Richard Rasmussen, B. Terry
{"title":"A Portable, Vacuum-Operated, and Purely Mechanical Device for Extracting Feces by Suction to Cure Chronic Anal Fissures","authors":"Riaz Ur Rehman Mohammed, Vedad Bassari, Richard Rasmussen, B. Terry","doi":"10.1115/1.4056251","DOIUrl":"https://doi.org/10.1115/1.4056251","url":null,"abstract":"\u0000 An anal fissure is a common anorectal problem that affects men and women of all age groups. It develops from an acute phase that presents as a linear or oval tear in the anoderm and may progress to a more complex chronic stage due to poor healing. Routine defecation causes overstretching of the anoderm and deepens the scar, setting up a positive feedback loop that keeps the fissure from healing. Existing treatments can be invasive, expensive, and may induce side effects. Here we present a novel vacuum-operated mechanical device to extract feces via suction. The device is designed to solve the problem of anodermal stretching by assisting in defecation. The device was tested in vitro on a benchtop model of the rectum and in vivo on pigs. In vitro tests showed that the device could hold a vacuum for 12 h with negligible leakage. Further, the device could extract simulated human feces at a flowrate of 32 mL/s. In vivo tests on pigs showed that the device did not cause any trauma to the rectal wall, thus demonstrating its safety. Our results highlight the potential of this novel platform to circumvent the problem of anodermal stretching and improve the healing rate of anal fissures.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44062213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of ANN to Nucleic Acid Analysis: Accurate Discrimination for Untypical Real-Time Fluorescence Curves with High Specificity and Sensitivity","authors":"Guijun Miao, Xiaodan Jiang, Yunping Tu, Lulu Zhang, Duli Yu, Shizhi Qian, Xianbo Qiu","doi":"10.1115/1.4056150","DOIUrl":"https://doi.org/10.1115/1.4056150","url":null,"abstract":"\u0000 As a division of polymerase chain reaction (PCR), convective PCR (CPCR) is able to achieve highly efficient thermal cycling based on free thermal convection with pseudo-isothermal heating, which could be beneficial to point-of-care (POC) nucleic acid analysis. Similar to traditional PCR or isothermal amplification, due to a couple of issues, e.g., reagent, primer design, reactor, reaction dynamics, amplification status, temperature and heating condition, and other reasons, in some cases of CPCR tests, untypical real-time fluorescence curves with positive or negative tests will show up. Especially, when parts of the characteristics between untypical low-positive and negative tests are mixed together, it is difficult to discriminate between them using traditional cycle threshold (Ct) value method. To handle this issue which may occur in CPCR, traditional PCR or isothermal amplification, as an example, instead of using complicated mathematical modeling and signal processing strategy, an artificial intelligence (AI) classification method with artificial neural network (ANN) modeling is developed to improve the accuracy of nucleic acid detection. It has been proven that both the detection specificity and sensitivity can be significantly improved even with a simple ANN model. It can be estimated that, the developed method based on AI modeling can be adopted to solve similar problem with PCR, or isothermal amplification methods.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48058786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Evaluation of Self-Cooling Electrodes for Radiofrequency Intestinal Anastomosis","authors":"Wanli Yue, Haipo Cui, Chengli Song, Liangyong Tu, Jingcheng Lang, Wenhui Yan, Yingxi Lu","doi":"10.1115/1.4056008","DOIUrl":"https://doi.org/10.1115/1.4056008","url":null,"abstract":"\u0000 Colorectal cancer is a common malignant tumor in the gastrointestinal tract. Resection of the cancerous site and anastomosis of the residual intestine is the preferred radical treatment for colorectal cancer. In particular, radiofrequency energy anastomosis of the residual intestine is being increasingly used in clinical practice. To improve the quality of anastomosis, reduce the thermal damage of tissue near the anastomosis area, and avoid foreign body residue in this area, we propose a self-cooling eversion-type radiofrequency-energy intestinal anastomosis electrode, which is analyzed through simulations and evaluated experimentally for welding intestinal tissue. For radiofrequency energy power of 160 W, anastomosis time of 13.2 s, and pressure of 154 kPa, the disconnected intestinal tissues can be anastomosed using the proposed electrode. The average burst pressure of the anastomotic orifice is 43.86 mmHg. During welding, the temperature of the normal saline at the outlet is 6.8 °C higher than that at the inlet, indicating that the use of circulating normal saline as the conductive and cooling medium can dissipate part of the heat generated by welding and reduce heat accumulation, thereby reducing thermal damage of biological tissue near the welding area. Overall, the proposed electrode may contribute to the recovery of postoperative intestinal function by enabling a novel strategy for clinical intestinal anastomosis induced by radiofrequency energy.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47050408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Evaluation of a High-Performance, Low-Cost Prosthetic Foot for Developing Countries","authors":"W. Johnson, Victor Prost, Pooja Mukul, A. Winter","doi":"10.1115/1.4055967","DOIUrl":"https://doi.org/10.1115/1.4055967","url":null,"abstract":"\u0000 A novel, high-performance, cosmetic, rugged, appropriately-costed, mass-manufacturable prosthetic foot for use in low-income countries was designed and field tested. This ruggedized foot was created to accommodate the unique economic, environmental, and cultural requirements for users in India. A previous prototype that enabled able-bodied like gait was modified to include a durable cosmetic cover without altering the tuned stiffness of the overall foot. After undergoing mechanical benchtop testing, the foot was distributed to prosthesis users in India to for at least 5 months. Afterwards, participants underwent clinical tests to evaluate walking performance, and additional benchtop testing was performed on the field-tested feet to identify changes in performance. The ruggedized foot endured one million fatigue cycles without failure and demonstrated the desired stiffness properties. Subjects walked significantly faster (0.14 m/s) with the ruggedized foot compared to the Jaipur foot, and the feet showed no visible sign of damage after months of use. Additionally, the field-tested feet showed little difference in stiffness from a set of unused controls. Anecdotal feedback from the participants indicated that the foot improved their speed and/or walking effort, but may benefit from more degrees of freedom about the ankle. The results suggest that the foot fulfills its design requirements; however, further field testing is required with more participants over a longer period to make sure the foot is suitable for use in developing countries.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41642730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Experimental Study of Feasibility of a Mini-Invasive Fixator for Rib Osteosynthesis","authors":"L. Puglisi, M. Ceccarelli, V. Ambrogi","doi":"10.1115/1.4055861","DOIUrl":"https://doi.org/10.1115/1.4055861","url":null,"abstract":"\u0000 Alternatives to the current invasive rib implants are discussed as from the current solutions with their constraints and disadvantages mainly in surgery application and clinical consequences. A novel rib fixator is presented with an experimental validation and characterization for a potential implementation in facilitating osteosynthesis of multifractured ribs. Testing is designed with lab facilities replicating normal breathing and coughing. Results of lab test with a Ribolution rib fixator prototype are discussed from experiences with pig ribs with satisfactory results in behavior and numerical values.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45712180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-Manipulator Robotic System for Ultrasound Tomography: Design, Calibration, and Image Results","authors":"Xiang Zhang, G. Ely, Bonghun Shin, B. Anthony","doi":"10.1115/1.4055655","DOIUrl":"https://doi.org/10.1115/1.4055655","url":null,"abstract":"\u0000 In this article, we present the design, validation, and imaging capabilities of a MEchanically Discretized Ultrasound Scanning Apparatus (MEDUSA) that supports flexible development of UST algorithms for complex tissue structures. Ultrasound tomography (UST) in the recent decade has shown promising results in quantitative soft-tissue imaging for clinical breast cancer diagnostics. There is growing interest in applying tomographic techniques to image broader tissue structures that include bone, where imaging is significantly more challenging due to strong impedance mismatches and complex wave propagation within the region. Changes in data acquisition strategy, algorithms, and system design are necessary to enable quantitative imaging of soft-tissue with bone inclusions. The 36 degree of freedom MEDUSA system allows free space positioning of acoustic transducers around an imaging target and enables investigation of imaging strategies not available in other UST systems. We present the mechanical design, parameter calibration, and tomographic imaging results using MEDUSA. Mono/Bi-static imaging and full-waveform inversion (FWI) results on real targets are presented and validates system performance capabilities for broader UST algorithm development for more complex tissue structures","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43277648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design, Analysis, and Control of A User-Adaptive","authors":"Yuan Zhou, Lu Liu","doi":"10.1115/1.4055521","DOIUrl":"https://doi.org/10.1115/1.4055521","url":null,"abstract":"\u0000 This paper presents the design and preliminary evaluation of a user-adaptive ankle foot orthosis (AFO). To begin with, according to the foot dimensions of an able-bodied subject, the structures of the ankle orthotic device are conceived. Then, based on a common two-degree-of-freedom (DOF) foot model, the AFO-human system is set up; its kinematic model and the device's mechanism of user adaptation are analyzed. After that, the layout of a portable orthotic system, as well as a smart insole that detects gait phases, is illustrated. Finally, the orthotic system is tested on the aforementioned subject. Results show that, when assistive torque of the AFO is applied, the foot's plantarflexion magnitude before the swing stage and dorsiflexion magnitude during the swing stage approximately increase by 3 and 4 degrees, respectively. Therefore, the orthosis has the potential to aid propulsion motions and control toe clearance.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43339774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on Movement Intentions of Human's Left and Right Legs Based on EEG Signals","authors":"Fangyan Dong, Liangdan Wu, Yongfei Feng, Dongtai Liang","doi":"10.1115/1.4055435","DOIUrl":"https://doi.org/10.1115/1.4055435","url":null,"abstract":"\u0000 Active rehabilitation training method can help stroke patients recover better and faster. However, the lower limb rehabilitation robot based on electroencephalogram (EEG) has low recognition accuracy now. A classification method based on EEG signals of motor imagery is proposed to enable patients to accurately control their left and right legs. Firstly, aiming at the unstable characteristics of EEG signals, an experimental protocl of motor imagery was constructed based on multi-joint motion coupling of left and right legs. The signals with time-frequency analysis and ERD/S analysis have proved the reliability and validity of the collected EEG signals. Then, the EEG signals generated by the protocol were preprocessed and Common Space Pattern (CSP) was used to extract their features. Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) are adapted and their accuracy of classification results are compared. Finally, on the basis of the proposed classifier with excellent performance, the classifier is used in the active control strategy of the lower limb rehabilitation robot, and the experiment verified that the average accuracy of two volunteers in controlling the lower limb rehabilitation robot reached 95.1%. This research provides a good theoretical basis for the realization and application of brain-computer interface in rehabilitation training.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47492728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Scott Stanslaski, Hafsa Farooqi, David Escobar Sanabria, Theoden Ivan Netoff
{"title":"Fully Closed Loop Test Environment for Adaptive Implantable Neural Stimulators Using Computational Models.","authors":"Scott Stanslaski, Hafsa Farooqi, David Escobar Sanabria, Theoden Ivan Netoff","doi":"10.1115/1.4054083","DOIUrl":"https://doi.org/10.1115/1.4054083","url":null,"abstract":"<p><p>Implantable brain stimulation devices continue to be developed to treat and monitor brain conditions. As the complexity of these devices grows to include adaptive neuromodulation therapy, validating the operation and verifying the correctness of these systems becomes more complicated. The new complexities lie in the functioning of the device being dependent on the interaction with the patient and environmental factors such as noise and artifacts. Here, we present a hardware-in-the-loop (HIL) testing framework that employs computational models of pathological neural dynamics to test adaptive deep brain stimulation (DBS) devices prior to animal or human testing. A brain stimulation and recording electrode array is placed in the saline tank and connected to an adaptive neuromodulation system that measures and processes the synthetic signals and delivers stimulation back into the saline tank. A data acquisition system is used to detect the stimulation and provide feedback to the computational model in order to simulate the effects of stimulation on the neural dynamics. In this study, we used real-time computational models to emulate the dynamics of epileptic seizures observed in the anterior nucleus of the thalamus (ANT) in epilepsy patients and beta band (11-35 Hz) oscillations observed in the subthalamic nucleus (STN) of Parkinson's disease (PD) patients. These models simulated neuronal responses to electrical stimulation pulses and the saline tank tested hardware interactions between the detection algorithms and stimulation interference. We tested and validated the operation of adaptive DBS algorithms for seizure and beta band power suppression embedded in an implantable DBS system (Medtronic Summit RC+S). This study highlights the utility of the proposed hardware-in-the-loop framework to systematically test the adaptive DBS systems in the presence of system aggressors such as environmental noise and stimulation-induced electrical artifacts. This testing procedure can help ensure correctness and robustness of adaptive DBS devices prior to animal and human testing.</p>","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9125865/pdf/med-21-1168_034501.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10486800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuefeng Hou, Akram Faqeeh, Ramak Amjad, John Pardalos, Roger Fales
{"title":"Clinical Evaluation of an Automatic Oxygen Control System for Premature Infants Receiving High-Flow Nasal Cannula for Respiratory Support: A Pilot Study.","authors":"Xuefeng Hou, Akram Faqeeh, Ramak Amjad, John Pardalos, Roger Fales","doi":"10.1115/1.4054250","DOIUrl":"https://doi.org/10.1115/1.4054250","url":null,"abstract":"<p><p>A pilot clinical study was conducted that compared the peripheral oxygen saturation (SpO<sub>2</sub>) targeting performance of an automatic oxygen control system with manual oxygen control, which is the standard of care for preterm and low birth weight infants on high-flow nasal cannula (HFNC). The new oxygen control device studied was used to automatically adjust the fraction of inspired oxygen (FiO<sub>2</sub>) according to a desired SpO<sub>2</sub> target setpoint and measured feedback signals including the SpO<sub>2</sub> and other signals. A crossover study was designed with several endpoints including the comparison of the percentage of time that the SpO<sub>2</sub> was within the target range with the automatic oxygen control device versus manual oxygen control. Other metrics were also compared to assess the performance of the system including the number of bradycardia events. The pilot study included six patients that fit the inclusion criteria. The results showed that there were improvements in all of the measured outcomes considered including statistically significant improvements in the number of bradycardia events during the period when the automatic oxygen control device was used.</p>","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9125868/pdf/med-20-1201_031005.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10188378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}