{"title":"一种治疗早期脊柱侧凸的低成本3D打印支架设计方法","authors":"Hongwei Li, Zhangkai Yang, Dichen Li, F. Qiao","doi":"10.1115/1.4054998","DOIUrl":null,"url":null,"abstract":"\n Early onset scoliosis (EOS) is a type of spine deformity that presents before 10 years of age. The biomechanical properties in scoliosis have been found to be di?erent, especially in the case of the concave and convex paraverte-bral muscles. Based on this fact, a novel 3d printed patient-specific asymmetric stiffness brace design method is proposed in this paper, aiming to provide asymmetric stiffness to match \"imbalanced\" biomechanical properties of the concave and convex paravertebral muscles, respectively, and treat EOS by applying the block-structure brace.A 3d CAD draft model of the brace contour was implemented from 3D scanning. The asymmetric stiffness block-structure brace was designed in Rhinoceros and the Finite Ele-ment (FE) model was imported into ABAQUS. FE simulation was employed to study the mechanical characteristics of the brace, which provided a quan-titative index for the \"imbalanced\" property of brace stiffness. The results of the FE simulation showed that the stiffnesses of the concave and convex sides were 145.88 N/mm and 35.95 N/mm, respectively. The block-structure brace was fabricated using 3d printing. Asymmetric stiffness was evaluated by corrective force measurements, which were obtained from a thin-film pressure sensor equipped on the brace. The patient-specific asymmetric stiffness brace was applied to clinical practice in a one-year old EOS patient. A novel low-cost 3D printed brace design method for EOS was proposed in this study that could potentially be useful in patient treatment acceptance.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Low-Cost 3D Printed Brace Design Method for Early Onset Scoliosis\",\"authors\":\"Hongwei Li, Zhangkai Yang, Dichen Li, F. Qiao\",\"doi\":\"10.1115/1.4054998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Early onset scoliosis (EOS) is a type of spine deformity that presents before 10 years of age. The biomechanical properties in scoliosis have been found to be di?erent, especially in the case of the concave and convex paraverte-bral muscles. Based on this fact, a novel 3d printed patient-specific asymmetric stiffness brace design method is proposed in this paper, aiming to provide asymmetric stiffness to match \\\"imbalanced\\\" biomechanical properties of the concave and convex paravertebral muscles, respectively, and treat EOS by applying the block-structure brace.A 3d CAD draft model of the brace contour was implemented from 3D scanning. The asymmetric stiffness block-structure brace was designed in Rhinoceros and the Finite Ele-ment (FE) model was imported into ABAQUS. FE simulation was employed to study the mechanical characteristics of the brace, which provided a quan-titative index for the \\\"imbalanced\\\" property of brace stiffness. The results of the FE simulation showed that the stiffnesses of the concave and convex sides were 145.88 N/mm and 35.95 N/mm, respectively. The block-structure brace was fabricated using 3d printing. Asymmetric stiffness was evaluated by corrective force measurements, which were obtained from a thin-film pressure sensor equipped on the brace. The patient-specific asymmetric stiffness brace was applied to clinical practice in a one-year old EOS patient. A novel low-cost 3D printed brace design method for EOS was proposed in this study that could potentially be useful in patient treatment acceptance.\",\"PeriodicalId\":49305,\"journal\":{\"name\":\"Journal of Medical Devices-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Devices-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4054998\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4054998","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Novel Low-Cost 3D Printed Brace Design Method for Early Onset Scoliosis
Early onset scoliosis (EOS) is a type of spine deformity that presents before 10 years of age. The biomechanical properties in scoliosis have been found to be di?erent, especially in the case of the concave and convex paraverte-bral muscles. Based on this fact, a novel 3d printed patient-specific asymmetric stiffness brace design method is proposed in this paper, aiming to provide asymmetric stiffness to match "imbalanced" biomechanical properties of the concave and convex paravertebral muscles, respectively, and treat EOS by applying the block-structure brace.A 3d CAD draft model of the brace contour was implemented from 3D scanning. The asymmetric stiffness block-structure brace was designed in Rhinoceros and the Finite Ele-ment (FE) model was imported into ABAQUS. FE simulation was employed to study the mechanical characteristics of the brace, which provided a quan-titative index for the "imbalanced" property of brace stiffness. The results of the FE simulation showed that the stiffnesses of the concave and convex sides were 145.88 N/mm and 35.95 N/mm, respectively. The block-structure brace was fabricated using 3d printing. Asymmetric stiffness was evaluated by corrective force measurements, which were obtained from a thin-film pressure sensor equipped on the brace. The patient-specific asymmetric stiffness brace was applied to clinical practice in a one-year old EOS patient. A novel low-cost 3D printed brace design method for EOS was proposed in this study that could potentially be useful in patient treatment acceptance.
期刊介绍:
The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.