一种治疗早期脊柱侧凸的低成本3D打印支架设计方法

IF 0.8 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Hongwei Li, Zhangkai Yang, Dichen Li, F. Qiao
{"title":"一种治疗早期脊柱侧凸的低成本3D打印支架设计方法","authors":"Hongwei Li, Zhangkai Yang, Dichen Li, F. Qiao","doi":"10.1115/1.4054998","DOIUrl":null,"url":null,"abstract":"\n Early onset scoliosis (EOS) is a type of spine deformity that presents before 10 years of age. The biomechanical properties in scoliosis have been found to be di?erent, especially in the case of the concave and convex paraverte-bral muscles. Based on this fact, a novel 3d printed patient-specific asymmetric stiffness brace design method is proposed in this paper, aiming to provide asymmetric stiffness to match \"imbalanced\" biomechanical properties of the concave and convex paravertebral muscles, respectively, and treat EOS by applying the block-structure brace.A 3d CAD draft model of the brace contour was implemented from 3D scanning. The asymmetric stiffness block-structure brace was designed in Rhinoceros and the Finite Ele-ment (FE) model was imported into ABAQUS. FE simulation was employed to study the mechanical characteristics of the brace, which provided a quan-titative index for the \"imbalanced\" property of brace stiffness. The results of the FE simulation showed that the stiffnesses of the concave and convex sides were 145.88 N/mm and 35.95 N/mm, respectively. The block-structure brace was fabricated using 3d printing. Asymmetric stiffness was evaluated by corrective force measurements, which were obtained from a thin-film pressure sensor equipped on the brace. The patient-specific asymmetric stiffness brace was applied to clinical practice in a one-year old EOS patient. A novel low-cost 3D printed brace design method for EOS was proposed in this study that could potentially be useful in patient treatment acceptance.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Low-Cost 3D Printed Brace Design Method for Early Onset Scoliosis\",\"authors\":\"Hongwei Li, Zhangkai Yang, Dichen Li, F. Qiao\",\"doi\":\"10.1115/1.4054998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Early onset scoliosis (EOS) is a type of spine deformity that presents before 10 years of age. The biomechanical properties in scoliosis have been found to be di?erent, especially in the case of the concave and convex paraverte-bral muscles. Based on this fact, a novel 3d printed patient-specific asymmetric stiffness brace design method is proposed in this paper, aiming to provide asymmetric stiffness to match \\\"imbalanced\\\" biomechanical properties of the concave and convex paravertebral muscles, respectively, and treat EOS by applying the block-structure brace.A 3d CAD draft model of the brace contour was implemented from 3D scanning. The asymmetric stiffness block-structure brace was designed in Rhinoceros and the Finite Ele-ment (FE) model was imported into ABAQUS. FE simulation was employed to study the mechanical characteristics of the brace, which provided a quan-titative index for the \\\"imbalanced\\\" property of brace stiffness. The results of the FE simulation showed that the stiffnesses of the concave and convex sides were 145.88 N/mm and 35.95 N/mm, respectively. The block-structure brace was fabricated using 3d printing. Asymmetric stiffness was evaluated by corrective force measurements, which were obtained from a thin-film pressure sensor equipped on the brace. The patient-specific asymmetric stiffness brace was applied to clinical practice in a one-year old EOS patient. A novel low-cost 3D printed brace design method for EOS was proposed in this study that could potentially be useful in patient treatment acceptance.\",\"PeriodicalId\":49305,\"journal\":{\"name\":\"Journal of Medical Devices-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Devices-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4054998\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4054998","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

摘要

早发性脊柱侧弯(EOS)是一种在10岁前出现的脊柱畸形。脊柱侧弯的生物力学特性已被发现是di?特别是在脊椎周围肌肉凹凸的情况下。基于这一事实,本文提出了一种新的3d打印患者专用不对称刚度支架设计方法,旨在提供不对称刚度,以分别匹配凹凸椎旁肌的“不平衡”生物力学特性,并通过应用块结构支架治疗EOS。通过三维扫描实现了支架轮廓的三维CAD草图模型。在Rhinoceros中设计了非对称刚度块体结构支撑,并将有限元模型引入ABAQUS。采用有限元模拟方法研究了支架的力学特性,为支架刚度的“不平衡”特性提供了一个定量指标。有限元模拟结果表明,凹侧和凸侧的刚度分别为145.88N/mm和35.95N/mm。采用3d打印技术制作了块体结构支架。不对称刚度通过校正力测量进行评估,校正力测量是从支架上配备的薄膜压力传感器获得的。患者特异性不对称刚度支架应用于一名一岁EOS患者的临床实践。本研究提出了一种新的低成本3D打印EOS支架设计方法,该方法可能有助于患者接受治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Low-Cost 3D Printed Brace Design Method for Early Onset Scoliosis
Early onset scoliosis (EOS) is a type of spine deformity that presents before 10 years of age. The biomechanical properties in scoliosis have been found to be di?erent, especially in the case of the concave and convex paraverte-bral muscles. Based on this fact, a novel 3d printed patient-specific asymmetric stiffness brace design method is proposed in this paper, aiming to provide asymmetric stiffness to match "imbalanced" biomechanical properties of the concave and convex paravertebral muscles, respectively, and treat EOS by applying the block-structure brace.A 3d CAD draft model of the brace contour was implemented from 3D scanning. The asymmetric stiffness block-structure brace was designed in Rhinoceros and the Finite Ele-ment (FE) model was imported into ABAQUS. FE simulation was employed to study the mechanical characteristics of the brace, which provided a quan-titative index for the "imbalanced" property of brace stiffness. The results of the FE simulation showed that the stiffnesses of the concave and convex sides were 145.88 N/mm and 35.95 N/mm, respectively. The block-structure brace was fabricated using 3d printing. Asymmetric stiffness was evaluated by corrective force measurements, which were obtained from a thin-film pressure sensor equipped on the brace. The patient-specific asymmetric stiffness brace was applied to clinical practice in a one-year old EOS patient. A novel low-cost 3D printed brace design method for EOS was proposed in this study that could potentially be useful in patient treatment acceptance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
11.10%
发文量
56
审稿时长
6-12 weeks
期刊介绍: The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信