Mouna Ben Salem, Guillaume Aiche, Y. Haddab, L. Rubbert, P. Renaud
{"title":"微生物取样胶囊:基于双稳态机制的密封溶液的设计、原型和评估","authors":"Mouna Ben Salem, Guillaume Aiche, Y. Haddab, L. Rubbert, P. Renaud","doi":"10.1115/1.4055250","DOIUrl":null,"url":null,"abstract":"\n The diagnosis and the treatment of gastrointestinal pathologies have experienced significant development in recent years with the invention of endoscopic capsules which facilitate the access to different sections of the gastrointestinal tract. At a research level, the concept of capsules has been used to perform several functions such as gastrointestinal tract inspection and drug delivery. Despite that, microbiota sampling still requires surgery in order to collect intestinal liquid samples. In this paper, we propose a microbiota sampling device that navigates through the gastrointestinal tract, takes a sample of the intestinal liquid and protects it from any contamination as the device navigates out of the human body. We use a bistable structure to close the capsule after sampling actuated by a foam. The device is safe for the human body and eco friendly, as it does not contain electronic components, batteries and does not require any external intervention. To manufacture the microbiota sampling capsule, we use additive manufacturing. This technology allows fast prototyping cycle at a relatively low cost. It also offers the use of biocompatible material in advanced stages of development.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbiota Sampling Capsule: Design, Prototyping and Assessment of a Sealing Solution Based on a Bistable Mechanism\",\"authors\":\"Mouna Ben Salem, Guillaume Aiche, Y. Haddab, L. Rubbert, P. Renaud\",\"doi\":\"10.1115/1.4055250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The diagnosis and the treatment of gastrointestinal pathologies have experienced significant development in recent years with the invention of endoscopic capsules which facilitate the access to different sections of the gastrointestinal tract. At a research level, the concept of capsules has been used to perform several functions such as gastrointestinal tract inspection and drug delivery. Despite that, microbiota sampling still requires surgery in order to collect intestinal liquid samples. In this paper, we propose a microbiota sampling device that navigates through the gastrointestinal tract, takes a sample of the intestinal liquid and protects it from any contamination as the device navigates out of the human body. We use a bistable structure to close the capsule after sampling actuated by a foam. The device is safe for the human body and eco friendly, as it does not contain electronic components, batteries and does not require any external intervention. To manufacture the microbiota sampling capsule, we use additive manufacturing. This technology allows fast prototyping cycle at a relatively low cost. It also offers the use of biocompatible material in advanced stages of development.\",\"PeriodicalId\":49305,\"journal\":{\"name\":\"Journal of Medical Devices-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Devices-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055250\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055250","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Microbiota Sampling Capsule: Design, Prototyping and Assessment of a Sealing Solution Based on a Bistable Mechanism
The diagnosis and the treatment of gastrointestinal pathologies have experienced significant development in recent years with the invention of endoscopic capsules which facilitate the access to different sections of the gastrointestinal tract. At a research level, the concept of capsules has been used to perform several functions such as gastrointestinal tract inspection and drug delivery. Despite that, microbiota sampling still requires surgery in order to collect intestinal liquid samples. In this paper, we propose a microbiota sampling device that navigates through the gastrointestinal tract, takes a sample of the intestinal liquid and protects it from any contamination as the device navigates out of the human body. We use a bistable structure to close the capsule after sampling actuated by a foam. The device is safe for the human body and eco friendly, as it does not contain electronic components, batteries and does not require any external intervention. To manufacture the microbiota sampling capsule, we use additive manufacturing. This technology allows fast prototyping cycle at a relatively low cost. It also offers the use of biocompatible material in advanced stages of development.
期刊介绍:
The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.