Accuracy of an Apparatus for Measuring Glenoid Baseplate Micromotion in Reverse Shoulder Arthroplasty

IF 0.8 4区 医学 Q4 ENGINEERING, BIOMEDICAL
L. Torkan, J. T. Bryant, R. Bicknell, H. Ploeg
{"title":"Accuracy of an Apparatus for Measuring Glenoid Baseplate Micromotion in Reverse Shoulder Arthroplasty","authors":"L. Torkan, J. T. Bryant, R. Bicknell, H. Ploeg","doi":"10.1115/1.4055063","DOIUrl":null,"url":null,"abstract":"\n Reverse shoulder arthroplasty (RSA) is used to treat patients with cuff tear arthropathy. Loosening remains one of the principal modes of implant failure and the main complication leading to revision. Excess micromotion contributes to glenoid loosening. This study assessed the predictive accuracy of an experimental system designed to assess factors contributing to RSA glenoid baseplate micromotion. A half-fractional factorial experiment was designed to assess 4 factors: central element type (screw vs. peg), central element length (13.5 vs. 23.5 mm), anterior posterior peripheral screw type (locking vs. nonlocking) and cancellous bone density (10 vs. 25 pounds per cubic foot [pcf]). Four linear variable differential transducers (LVDTs) recorded micromotion from a stainless-steel disc surrounding a modified glenosphere. The displacements were used to interpolate micromotion at each of the respective peripheral screw positions. The mean absolute percentage error (MAPE) was used to determine the predictive accuracy and error range of the system. The MAPE for each condition ranged from 6.8% to 12.9% for an overall MAPE of (9.5±0.9)%. The system had an error range of 2.7 µm to 20.1 µm, which was lower than those reported by prior studies using optical systems. One of the eight conditions had micromotion that exceeded 150 µm. These findings support the use of displacement transducers, specifically LVDTs, as an accurate system for determining RSA baseplate micromotion in rigid polyurethane foam bone surrogates.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055063","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Reverse shoulder arthroplasty (RSA) is used to treat patients with cuff tear arthropathy. Loosening remains one of the principal modes of implant failure and the main complication leading to revision. Excess micromotion contributes to glenoid loosening. This study assessed the predictive accuracy of an experimental system designed to assess factors contributing to RSA glenoid baseplate micromotion. A half-fractional factorial experiment was designed to assess 4 factors: central element type (screw vs. peg), central element length (13.5 vs. 23.5 mm), anterior posterior peripheral screw type (locking vs. nonlocking) and cancellous bone density (10 vs. 25 pounds per cubic foot [pcf]). Four linear variable differential transducers (LVDTs) recorded micromotion from a stainless-steel disc surrounding a modified glenosphere. The displacements were used to interpolate micromotion at each of the respective peripheral screw positions. The mean absolute percentage error (MAPE) was used to determine the predictive accuracy and error range of the system. The MAPE for each condition ranged from 6.8% to 12.9% for an overall MAPE of (9.5±0.9)%. The system had an error range of 2.7 µm to 20.1 µm, which was lower than those reported by prior studies using optical systems. One of the eight conditions had micromotion that exceeded 150 µm. These findings support the use of displacement transducers, specifically LVDTs, as an accurate system for determining RSA baseplate micromotion in rigid polyurethane foam bone surrogates.
反向肩关节置换术中关节盂底微运动测量仪的准确性
反肩关节置换术(RSA)用于治疗袖带撕裂性关节病患者。松动仍然是植入物失败的主要模式之一,也是导致翻修的主要并发症。过度的微动会导致关节盂松动。这项研究评估了一个实验系统的预测准确性,该系统旨在评估RSA关节盂基板微动的因素。设计了一个半析因实验来评估4个因素:中心元件类型(螺钉与销钉)、中心元件长度(13.5与23.5 mm)、前后外周螺钉类型(锁定与非锁定)和松质骨密度(10与25磅/立方英尺[pcf])。四个线性可变差分换能器(LVDT)记录了一个不锈钢圆盘围绕一个改良的关节盂球的微运动。位移被用来对各个外围螺钉位置处的微运动进行插值。平均绝对百分比误差(MAPE)用于确定系统的预测精度和误差范围。对于(9.5±0.9)%的总MAPE,每个条件的MAPE范围为6.8%至12.9%;m至20.1µ;m、 其低于先前使用光学系统的研究所报告的那些。八个条件中的一个条件具有超过150µ;m.这些发现支持使用位移传感器,特别是LVDT,作为确定刚性聚氨酯泡沫骨替代物中RSA基板微运动的精确系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
11.10%
发文量
56
审稿时长
6-12 weeks
期刊介绍: The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信