笛卡尔坐标系和曲线坐标系下的三维打印

IF 0.8 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Edward Shi, Leo Lou, Linnea Warburton, B. Rubinsky
{"title":"笛卡尔坐标系和曲线坐标系下的三维打印","authors":"Edward Shi, Leo Lou, Linnea Warburton, B. Rubinsky","doi":"10.1115/1.4055064","DOIUrl":null,"url":null,"abstract":"\n A 3D printing technology that facilitates continuous printing along a combination of cartesian and curvilinear coordinates, designed for in vivo and in situ bioprinting is introduced. The combined cartesian/curvilinear printing head motion is accomplished by attaching a biomimetic, flexible, \"tendon cable\" soft robot arm to a conventional cartesian three axis 3D printing carousel. This allows printing along a combination of cartesian and curvilinear coordinates using five independent stepper motors controlled by an Arduino Uno with each motor requiring a microstep driver powered via a 12V power supply. Three of the independent motors control the printing head motion along conventional cartesian coordinates while two of the independent motors control the length of each pair of the four \"tendon cables\" which in turn controls the radius of curvature and the angle displacement of the soft printer head along two orthogonal planes. This combination imparts motion along six independent degrees of freedom in cartesian and curvilinear coordinates. The design of the system is described together with experimental results which demonstrate that this design can print continuously along curved and inclined surfaces while avoiding the \"staircase\" effect, which is typical of conventional three axis 3D printing along curvilinear surfaces.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"3D Printing in Combined Cartesian and Curvilinear Coordinates\",\"authors\":\"Edward Shi, Leo Lou, Linnea Warburton, B. Rubinsky\",\"doi\":\"10.1115/1.4055064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A 3D printing technology that facilitates continuous printing along a combination of cartesian and curvilinear coordinates, designed for in vivo and in situ bioprinting is introduced. The combined cartesian/curvilinear printing head motion is accomplished by attaching a biomimetic, flexible, \\\"tendon cable\\\" soft robot arm to a conventional cartesian three axis 3D printing carousel. This allows printing along a combination of cartesian and curvilinear coordinates using five independent stepper motors controlled by an Arduino Uno with each motor requiring a microstep driver powered via a 12V power supply. Three of the independent motors control the printing head motion along conventional cartesian coordinates while two of the independent motors control the length of each pair of the four \\\"tendon cables\\\" which in turn controls the radius of curvature and the angle displacement of the soft printer head along two orthogonal planes. This combination imparts motion along six independent degrees of freedom in cartesian and curvilinear coordinates. The design of the system is described together with experimental results which demonstrate that this design can print continuously along curved and inclined surfaces while avoiding the \\\"staircase\\\" effect, which is typical of conventional three axis 3D printing along curvilinear surfaces.\",\"PeriodicalId\":49305,\"journal\":{\"name\":\"Journal of Medical Devices-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Devices-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055064\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055064","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 3

摘要

介绍了一种3D打印技术,该技术有助于沿着笛卡尔坐标和曲线坐标的组合进行连续打印,专为体内和原位生物打印而设计。笛卡尔/曲线打印头的组合运动是通过将仿生、柔性的“腱索”软机械臂连接到传统的笛卡尔三轴3D打印转盘上来实现的。这允许使用由Arduino Uno控制的五个独立步进电机沿着笛卡尔坐标和曲线坐标的组合进行打印,每个电机都需要通过12V电源供电的微步驱动器。其中三个独立电机控制打印头沿传统笛卡尔坐标的运动,而两个独立电机则控制每对四根“腱索”的长度,这反过来又控制软打印头沿两个正交平面的曲率半径和角度位移。这种组合在笛卡尔坐标系和曲线坐标系中沿六个独立的自由度进行运动。该系统的设计和实验结果表明,该设计可以沿曲线和倾斜表面连续打印,同时避免了传统沿曲线表面三轴3D打印的典型“楼梯”效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D Printing in Combined Cartesian and Curvilinear Coordinates
A 3D printing technology that facilitates continuous printing along a combination of cartesian and curvilinear coordinates, designed for in vivo and in situ bioprinting is introduced. The combined cartesian/curvilinear printing head motion is accomplished by attaching a biomimetic, flexible, "tendon cable" soft robot arm to a conventional cartesian three axis 3D printing carousel. This allows printing along a combination of cartesian and curvilinear coordinates using five independent stepper motors controlled by an Arduino Uno with each motor requiring a microstep driver powered via a 12V power supply. Three of the independent motors control the printing head motion along conventional cartesian coordinates while two of the independent motors control the length of each pair of the four "tendon cables" which in turn controls the radius of curvature and the angle displacement of the soft printer head along two orthogonal planes. This combination imparts motion along six independent degrees of freedom in cartesian and curvilinear coordinates. The design of the system is described together with experimental results which demonstrate that this design can print continuously along curved and inclined surfaces while avoiding the "staircase" effect, which is typical of conventional three axis 3D printing along curvilinear surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
11.10%
发文量
56
审稿时长
6-12 weeks
期刊介绍: The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信