Biodegradation最新文献

筛选
英文 中文
Isolation and characterization of distinctive pyrene-degrading bacteria from an uncontaminated soil 从未遭污染的土壤中分离出独特的芘降解细菌并确定其特征。
IF 3.1 4区 生物学
Biodegradation Pub Date : 2024-01-27 DOI: 10.1007/s10532-023-10065-y
Shanshan Sun, Ran Wei, Siyi Hu, Meiyu Yang, Jinzhi Ni
{"title":"Isolation and characterization of distinctive pyrene-degrading bacteria from an uncontaminated soil","authors":"Shanshan Sun,&nbsp;Ran Wei,&nbsp;Siyi Hu,&nbsp;Meiyu Yang,&nbsp;Jinzhi Ni","doi":"10.1007/s10532-023-10065-y","DOIUrl":"10.1007/s10532-023-10065-y","url":null,"abstract":"<div><p>Considerable efforts that isolate and characterize degrading bacteria for polycyclic aromatic hydrocarbons (PAHs) have focused on contaminated environments so far. Here we isolated three distinctive pyrene (PYR)-degrading bacteria from a paddy soil that was not contaminated with PAHs. These included a novel <i>Bacillus</i> sp. PyB-9 and efficient degraders, <i>Shigella</i> sp. PyB-6 and <i>Agromyces</i> sp. PyB-10. All three strains could utilize naphthalene, phenanthrene, anthracene, fluoranthene and PYR as sole carbon sources, and degraded PYR in a range of temperatures (27–37 °C) and pH (5–8). Strains PyB-6 and PyB-10 almost completely degraded 50 mg L<sup>−1</sup> PYR within 15 days, and 75.5% and 98.9% of 100 mg L<sup>−1</sup> PYR in 27 days, respectively. The kinetics of PYR biodegradation was well represented by the Gompertz model. Ten and twelve PYR metabolites were identified in PYR degradation process by strains PyB-6 and PyB-10, respectively. Chemical analyses demonstrated that the degradation mechanisms of PYR were the same for strains PyB-6 and PyB-10 with initial dioxygenation mainly on C-4,5 positions of PYR. The degradation of 4,5-phenanthrenedicarboxylic acid was branched to 4-phenanthrenecarboxylic acid pathway and 5-hydroxy-4-phenanthrenecarboxylic acid pathway, both of which played important roles in PYR degradation by strains PyB-6 and PyB-10. To our knowledge, <i>Shigella</i> sp. and <i>Agromyces</i> sp. were found for the first time to possess the capability for PAHs degradation. These findings contributed to upgrading the bank of microbial resource and knowledge on PAH biodegradation.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 5","pages":"657 - 670"},"PeriodicalIF":3.1,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139566321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanically stirred enzymatic membrane reactor containing HRP immobilized on Tau-SiO2@Fe3O4-GO nanocomposite for removal of tetracycline in synthetically concocted wastewater 含有固定在 Tau-SiO2@Fe3O4-GO 纳米复合材料上的 HRP 的机械搅拌酶膜反应器用于去除合成废水中的四环素。
IF 3.1 4区 生物学
Biodegradation Pub Date : 2024-01-23 DOI: 10.1007/s10532-023-10066-x
Monireh Besharati Vineh, Amir Ali Poostchi, Davood Kordestani, Mahmoud Karami Qushehbolagh, Ali Akbar Saboury
{"title":"Mechanically stirred enzymatic membrane reactor containing HRP immobilized on Tau-SiO2@Fe3O4-GO nanocomposite for removal of tetracycline in synthetically concocted wastewater","authors":"Monireh Besharati Vineh,&nbsp;Amir Ali Poostchi,&nbsp;Davood Kordestani,&nbsp;Mahmoud Karami Qushehbolagh,&nbsp;Ali Akbar Saboury","doi":"10.1007/s10532-023-10066-x","DOIUrl":"10.1007/s10532-023-10066-x","url":null,"abstract":"<div><p>The process of mechanically stirred membrane reactor containing the suspension of horseradish peroxidase (HRP) immobilized on synthesized nanocomposite (Tau-SiO<sub>2</sub>@Fe<sub>3</sub>O<sub>4</sub>-GO) was designed for continuous degradation of tetracycline. The immobilized HRP was characterized in terms of kinetic parameters and catalytic activities as these parameters were improved highly through immobilization. The stability indices including pH and temperature were investigated in parallel. The immobilized HRP was more tolerable to pH changes as compared to free HRP and the optimum temperature obtained at 40 °C. The reusability of HRP was promoted by immobilization as far as 70% of initial activity after ten cycles. The enzymatic degradation of optimum concentration of tetracycline was carried out in batch condition and 100% of tetracycline removed after 30 min. The results also showed that higher concentration of H<sub>2</sub>O<sub>2</sub> exhibited more oxidation of tetracycline. The optimal ratio of HRP/H<sub>2</sub>O<sub>2</sub> was also obtained at 0.005. The simultaneous process including separation and the biocatalytic degradation established in the membrane stirrer reactor concluded that no amount of tetracycline was observed in the permeate stream coming from the membrane after 30 min of operation.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 4","pages":"407 - 422"},"PeriodicalIF":3.1,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139519475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitigation of Desulfovibrio ferrophilus IS5 degradation of X80 carbon steel mechanical properties using a green biocide 使用绿色杀菌剂缓解铁锈脱硫弧菌 IS5 对 X80 碳钢机械性能的降解。
IF 3.1 4区 生物学
Biodegradation Pub Date : 2024-01-23 DOI: 10.1007/s10532-023-10063-0
Zhong Li, Jike Yang, Shihang Lu, Wenwen Dou, Tingyue Gu
{"title":"Mitigation of Desulfovibrio ferrophilus IS5 degradation of X80 carbon steel mechanical properties using a green biocide","authors":"Zhong Li,&nbsp;Jike Yang,&nbsp;Shihang Lu,&nbsp;Wenwen Dou,&nbsp;Tingyue Gu","doi":"10.1007/s10532-023-10063-0","DOIUrl":"10.1007/s10532-023-10063-0","url":null,"abstract":"<div><p>Most microbiologically influenced corrosion (MIC) studies focus on the threat of pinhole leaks caused by MIC pitting. However, microbes can also lead to structural failures. Tetrakis hydroxymethyl phosphonium sulfate (THPS) biocide mitigated the microbial degradation of mechanical properties of X80 steel pipeline by <i>Desulfovibrio ferrophilus</i> (IS5 strain), a very corrosive sulfate reducing bacterium. It was found that 100 ppm (w/w) THPS added to the enriched artificial seawater (EASW) culture medium before incubation resulted in 2.8-log reduction in sessile cell count after a 7-d incubation at 28 °C under anaerobic conditions, leading to 94% uniform corrosion rate reduction (from 1.3 to 0.07 mm/a), and 84% pitting corrosion rate reduction (from 0.70 to 0.11 mm/a). The X80 dogbone coupon incubated with 100 ppm THPS for 7 d suffered 3% loss in ultimate tensile strain and 0% loss in ultimate tensile strength compared with the abiotic control in EASW. In comparison, the no-treatment X80 dogbone coupon suffered losses of 13% in ultimate tensile strain and 6% in ultimate tensile stress, demonstrating very good THPS efficacy.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 4","pages":"439 - 449"},"PeriodicalIF":3.1,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139519479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of bacterial community in a rapid composting method using 16SrDNA genes sequencing 利用16SrDNA基因测序快速堆肥法鉴定细菌群落。
IF 3.1 4区 生物学
Biodegradation Pub Date : 2023-11-21 DOI: 10.1007/s10532-023-10056-z
Muhammad Shahid, Waqar Ahmed, Abdul Basit Khan, Zafar Iqbal Shams, Afsheen Arif
{"title":"Identification of bacterial community in a rapid composting method using 16SrDNA genes sequencing","authors":"Muhammad Shahid,&nbsp;Waqar Ahmed,&nbsp;Abdul Basit Khan,&nbsp;Zafar Iqbal Shams,&nbsp;Afsheen Arif","doi":"10.1007/s10532-023-10056-z","DOIUrl":"10.1007/s10532-023-10056-z","url":null,"abstract":"<div><p>Composting is a process of microbial degradation of organic waste and is commonly applied for waste management. This is a slow process and requires a lot of land and human resources. The present study investigated mechanical augmentation with required microbial culture for composting municipal solid waste (MSW). Thirty isolates were subjected to 16S rDNA PCR amplification and gene sequencing. The isolates' sequencing from the compost samples was processed on BLASTn. Fourteen strains were identified for further experiments. The results divulge that Empedobacter (04), Bacillus (02), Proteus (02), Lactiplantibacillus (01), Klebsiella (01), Citrobacter (01), Brevibacillus (01), <i>E. coli</i> (01) and one unidentified strain were growing during composting. Eleven combinations of bacterial consortium and respective additives were applied for the organic waste decomposition in the next stage, resulting in varied completion periods ranging from 3 to 14 days. Two combinations were completed within 3 days, which are considered ideal combinations for composting. The microbial consortium was significantly diverse, which is a reason for rapid biodegradation. The present study reveals that the technology will be highly feasible for municipal solid waste management in tropical/subtropical countries.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 4","pages":"361 - 370"},"PeriodicalIF":3.1,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138175174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-based polyester-polyurethane foams: synthesis and degradability by Aspergillus niger and Aspergillus clavatus 生物基聚酯-聚氨酯泡沫:黑曲霉和克拉曲霉的合成及其降解性。
IF 3.1 4区 生物学
Biodegradation Pub Date : 2023-11-21 DOI: 10.1007/s10532-023-10059-w
Mara L. Polo, Karen Russell-White, Santiago E. Vaillard, Luis Ríos, Gregorio R. Meira, Diana A. Estenoz, Marisa E. Spontón
{"title":"Bio-based polyester-polyurethane foams: synthesis and degradability by Aspergillus niger and Aspergillus clavatus","authors":"Mara L. Polo,&nbsp;Karen Russell-White,&nbsp;Santiago E. Vaillard,&nbsp;Luis Ríos,&nbsp;Gregorio R. Meira,&nbsp;Diana A. Estenoz,&nbsp;Marisa E. Spontón","doi":"10.1007/s10532-023-10059-w","DOIUrl":"10.1007/s10532-023-10059-w","url":null,"abstract":"<div><p>In this article, the degradability by <i>Aspergillus niger and Aspergillus clavatus</i> of three bio-based polyurethane (PU) foams is compared to previous degradability studies involving a <i>Pseudomonas</i> sp. bacterium and similar initial materials (Spontón et al. in Int. Biodet. Biodeg. 85:85–94, 2013, https://doi.org/10.1016/j.ibiod.2013.05.019). First, three new polyester-polyurethane foams were prepared from mixtures of castor oil (CO), maleated castor oil (MACO), toluene diisocyanate (TDI), and water. Then, their degradation tests were carried out in an aqueous medium, and employing the two mentioned fungi, after their isolation from the environment. From the degradation tests, the following was observed: (a) the insoluble (and slightly collapsed) foams exhibited free hydroxyl, carboxyl, and amine moieties; and (b) the water soluble (and low molar mass) compounds contained amines, carboxylic acids, and glycerol. The most degraded foam contained the highest amount of MACO, and therefore the highest concentration of hydrolytic bonds. A basic biodegradation mechanism was proposed that involves hydrolysis and oxidation reactions.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 3","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138175173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organic stabilization and methane production under different organic loading rates in UASB treating swine wastewater 不同有机负荷量下UASB处理猪场废水的有机稳定性和甲烷产量。
IF 3.1 4区 生物学
Biodegradation Pub Date : 2023-11-15 DOI: 10.1007/s10532-023-10060-3
Jacineumo Falcão de Oliveira, Ronaldo Fia, Ana Flavia Santos Rabelo de Melo, Fátima Resende Luiz Fia, Fernando Neris Rodrigues, Luciene Alves Batista Siniscalchi, Mateus Pimentel de Matos
{"title":"Organic stabilization and methane production under different organic loading rates in UASB treating swine wastewater","authors":"Jacineumo Falcão de Oliveira,&nbsp;Ronaldo Fia,&nbsp;Ana Flavia Santos Rabelo de Melo,&nbsp;Fátima Resende Luiz Fia,&nbsp;Fernando Neris Rodrigues,&nbsp;Luciene Alves Batista Siniscalchi,&nbsp;Mateus Pimentel de Matos","doi":"10.1007/s10532-023-10060-3","DOIUrl":"10.1007/s10532-023-10060-3","url":null,"abstract":"<div><p>This study proposes the was to evaluate the stability and methane production with organic load differents in an upflow anaerobic sludge blanket reactor (UASB) treating swine wastewater by methods of multivariate analysis. Four organic loads were used with average hydraulic holding times of one day. The methods of data analysis of linear regression, Pearson correlation, principal component analysis and hierarchical clustering analysis were used for understanding stability and methane production in the reactor. The highest concentrations of bicarbonate alkalinity of 683 mg L<sup>−1</sup> CaCO<sub>3</sub> and total volatile acids of 1418 mg L<sup>−1</sup> HAc with maximum organic loading applied were obtained. The optimal stability conditions occurred at an intermediate and partial alkalinity ratio between 0.24 and 0.25 observed in initial phases with a chemical oxygen demand (COD) removal of 47–57%. Maximum methane production was 9.0 L CH<sub>4</sub> d<sup>−1</sup> observed with linear regression positive and occurred at the highest applied organic load, corresponding to the highest COD removal efficiency and increased microbial biomass. Positive and negative correlation between functional stability in anaerobic digestion showed regular activity between acids, alkalinity and organic matter removal. This fact was also proven by the analysis of principal components that showed three components responsible for explaining 83.2% of the data variability, and the alkalinity, organic matter influent and organic acids had the greatest effects on the stability of the UASB reactor. Hierarchical clusters detected the formation of five groupings with a similarity of 50.1%, indicating that temperature and pH were variables with unitary influences on data dimensionality.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 4","pages":"389 - 405"},"PeriodicalIF":3.1,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"107589912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradation of low-density polythene (LDPE) by a novel strain of Pseudomonas aeruginosa WD4 isolated from plastic dumpsite 从塑料垃圾场分离的新型铜绿假单胞菌WD4对低密度聚乙烯(LDPE)的生物降解。
IF 3.1 4区 生物学
Biodegradation Pub Date : 2023-11-06 DOI: 10.1007/s10532-023-10061-2
Shilpa, Nitai Basak, Sumer Singh Meena
{"title":"Biodegradation of low-density polythene (LDPE) by a novel strain of Pseudomonas aeruginosa WD4 isolated from plastic dumpsite","authors":"Shilpa,&nbsp;Nitai Basak,&nbsp;Sumer Singh Meena","doi":"10.1007/s10532-023-10061-2","DOIUrl":"10.1007/s10532-023-10061-2","url":null,"abstract":"<div><p>The present study was proposed with the idea to screen and isolate efficient low-density polyethylene (LDPE) degrading novel bacterial strains from the plastic-contaminated dumping site. The identification of the bacterial isolate was performed with the help of microbiological and molecular characterization approaches. The screening of the best isolate was performed based on its growth in Bushnell-Hass broth supplemented with LDPE sheets as the sole carbon source. The molecular characterization revealed that the isolate WD4 showed a similarity with the <i>Pseudomonas aeruginosa</i> species. A comparative analysis of <i>Pseudomonas aeruginosa</i> WD4 identified in the current study with <i>Pseudomonas putida</i> MTCC 2445 strain was performed. The present study demonstrated that the bacterial isolate showed 9.2% degradation of LDPE films while <i>Pseudomonas putida</i> revealed a 6.5% weight reduction after 100 days of incubation at 37 °C. The end products of the LDPE degradation were analysed using Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC–MS). The LDPE degradation products eluted include fatty acids such as octadecanoic, hexadecanoic acid, dodecanal, and octyl palmitoleate, alkanes, and some of the unknown compounds after 100 days of microbial treatment with the isolated strain. The detailed analysis of the by-products generated in the current study indicates their contribution to the biochemical pathway of LDPE degradation. The profound scope lies in the scalability of these bacterial strains at the industrial level to combat the LDPE waste and similar plastic garbage problems, globally.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 5","pages":"641 - 655"},"PeriodicalIF":3.1,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71476605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous biodegradation kinetics of 1,4-dioxane and ethane 1,4-二恶烷和乙烷的同时生物降解动力学。
IF 3.1 4区 生物学
Biodegradation Pub Date : 2023-11-02 DOI: 10.1007/s10532-023-10058-x
Ermias Gebrekrstos Tesfamariam, Yi-Hao Luo, Chen Zhou, Ming Ye, Rosa Krajmalnik-Brown, Bruce E. Rittmann, Youneng Tang
{"title":"Simultaneous biodegradation kinetics of 1,4-dioxane and ethane","authors":"Ermias Gebrekrstos Tesfamariam,&nbsp;Yi-Hao Luo,&nbsp;Chen Zhou,&nbsp;Ming Ye,&nbsp;Rosa Krajmalnik-Brown,&nbsp;Bruce E. Rittmann,&nbsp;Youneng Tang","doi":"10.1007/s10532-023-10058-x","DOIUrl":"10.1007/s10532-023-10058-x","url":null,"abstract":"<div><p>Biodegradation of 1,4-Dioxane at environmentally relevant concentrations usually requires the addition of a primary electron-donor substrate to sustain biomass growth. Ethane is a promising substrate, since it is available as a degradation product of 1,4-Dioxane’s common co-contaminants. This study reports kinetic parameters for ethane biodegradation and co-oxidations of ethane and 1,4-Dioxane. Based on experiments combined with mathematical modeling, we found that ethane promoted 1,4-Dioxane biodegradation when the initial mass ratio of ethane:1,4-Dioxane was &lt; 9:1 mg COD/mg COD, while it inhibited 1,4-Dioxane degradation when the ratio was &gt; 9:1. A model-independent estimator was used for kinetic-parameter estimation, and all parameter values for 1,4-Dioxane were consistent with literature-reported ranges. Estimated parameters support competitive inhibition between ethane as the primary substrate and 1,4-Dioxane as the secondary substrate. The results also support that bacteria that co-oxidize ethane and 1,4-Dioxane had a competitive advantage over bacteria that can use only one of the two substrates. The minimum concentration of ethane to sustain ethane-oxidizing bacteria and ethane and 1,4-Dioxane-co-oxidizing bacteria was 0.09 mg COD/L, which is approximately 20-fold lower than the minimum concentration reported for propane, another common substrate used to promote 1,4-Dioxane biodegradation. The minimum 1,4-Dioxane concentration required to sustain steady-state biomass with 1,4-Dioxane as the sole primary substrate was 1.3 mg COD/L. As 1,4-Dioxane concentrations at most groundwater sites are less than 0.18 mg COD/L, providing ethane as a primary substrate is vital to support biomass growth and consequently enable 1,4-Dioxane bioremediation.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 4","pages":"371 - 388"},"PeriodicalIF":3.1,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71419433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differences among active toluene-degrading microbial communities in farmland soils with different levels of heavy metal pollution 不同重金属污染水平农田土壤中活性甲苯降解微生物群落的差异。
IF 3.1 4区 生物学
Biodegradation Pub Date : 2023-10-17 DOI: 10.1007/s10532-023-10057-y
Fei Dou, Yundang Wu, Jibing Li, Chuanping Liu
{"title":"Differences among active toluene-degrading microbial communities in farmland soils with different levels of heavy metal pollution","authors":"Fei Dou,&nbsp;Yundang Wu,&nbsp;Jibing Li,&nbsp;Chuanping Liu","doi":"10.1007/s10532-023-10057-y","DOIUrl":"10.1007/s10532-023-10057-y","url":null,"abstract":"<div><p>Heavy metals can severely influence the mineralisation of organic pollutants in a compound-polluted environment. However, to date, no study has focused on the effects of heavy metals on the active organic pollutant-degrading microbial communities to understand the bioremediation mechanism. In this study, toluene was used as the model organic pollutant to explore the effects of soils with different levels of heavy metal pollution on organic contaminant degradation in the same area via stable isotope probing (SIP) and 16 S rRNA high-throughput sequencing. Heavy metals can seriously affect toluene biodegradation and regulate the abundance and diversity of microbial communities. SIP revealed a drastic difference in the community structure of active toluene degraders between the unpolluted and heavy metal-polluted soils. All SIP-identified degraders were assigned to nine bacterial classes, among which Alphaproteobacteria, Gammaproteobacteria, and Bacilli were shared by both treatments. Among all active degraders, <i>Nitrospira</i>, <i>Nocardioides</i>, <i>Conexibacteraceae</i>, and <i>Singulisphaera</i> were linked to toluene biodegradation for the first time. Notably, the type of active degrader and microbial diversity were strongly related to biodegradation efficiency, indicating their key role in toluene biodegradation. Overall, heavy metals can affect the microbial diversity and alter the functional microbial communities in soil, thereby influencing the removal efficiency of organic contaminants. Our findings provide novel insights into the biodegradation mechanism of organic pollutants in heavy metal-polluted soils and highlight the biodiversity of microbes involved in toluene biodegradation in compound-polluted environments.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 3","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41231379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degradation of multiple PAHs and co-contaminants by microbial consortia and their toxicity assessment 微生物群落对多种多环芳烃和共污染物的降解及其毒性评估。
IF 3.1 4区 生物学
Biodegradation Pub Date : 2023-10-04 DOI: 10.1007/s10532-023-10055-0
Arfin Imam, Sunil Kumar Suman, Sonpal Vasavdutta, Shruti Chatterjee, Bhanu Prasad Vempatapu, Anjan Ray, Pankaj K. Kanaujia
{"title":"Degradation of multiple PAHs and co-contaminants by microbial consortia and their toxicity assessment","authors":"Arfin Imam,&nbsp;Sunil Kumar Suman,&nbsp;Sonpal Vasavdutta,&nbsp;Shruti Chatterjee,&nbsp;Bhanu Prasad Vempatapu,&nbsp;Anjan Ray,&nbsp;Pankaj K. Kanaujia","doi":"10.1007/s10532-023-10055-0","DOIUrl":"10.1007/s10532-023-10055-0","url":null,"abstract":"<div><p>The anthropogenic activities toward meeting the energy requirements have resulted in an alarming rise in environmental pollution levels. Among pollutants, polycyclic aromatic hydrocarbons (PAHs) are the most predominant due to their persistent and toxic nature. Amidst the several pollutants depuration methods, bioremediation utilizing biodegradation is the most viable alternative. This study investigated the biodegradation efficacy using developed microbial consortium PBR-21 for 2–4 ringed PAHs named naphthalene (NAP), anthracene (ANT), fluorene (FLU), and pyrene (PYR). The removal efficiency was observed up to 100 ± 0.0%, 70.26 ± 4.2%, 64.23 ± 2.3%, and 61.50 ± 2.6%, respectively, for initial concentrations of 400 mg L<sup>−1</sup> for NAP, ANT, FLU, and PYR respectively. Degradation followed first-order kinetics with rate constants of 0.39 d<sup>−1</sup>, 0.10 d<sup>−1</sup>, 0.08 d<sup>−1</sup>, and 0.07 d<sup>−1</sup> and half-life <span>(left({t}_{1/2}right))</span> of 1.8 h, 7.2 h, 8.5 h, and 10 h, respectively. The microbial consortia were found to be efficient towards the co-contaminants with 1 mM concentration. Toxicity examination indicated that microbial-treated PAHs resulted in lesser toxicity in aquatic crustaceans (<i>Artemia salina</i>) than untreated PAHs. Also, the study suggests that indigenous microbial consortia PBR-21 has the potential to be used in the bioremediation of PAH-contaminated environment.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 3","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41104203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信