Yunyi Cao, Shuai Yuan, Lingling Pang, Jiuyan Xie, Yi Gao, Jian Zhang, Zhenyao Zhao, Su Yao
{"title":"Study on microbial diversity of washing machines","authors":"Yunyi Cao, Shuai Yuan, Lingling Pang, Jiuyan Xie, Yi Gao, Jian Zhang, Zhenyao Zhao, Su Yao","doi":"10.1007/s10532-023-10069-8","DOIUrl":null,"url":null,"abstract":"<div><p>Health and environmental protection are the development trend of household appliances, coupled with the impact of the COVID-19 epidemic in the past few years. Consumers have unprecedented concerns and expectations about the sterilization and disinfection functions of household appliances. As a washing and nursing equipment for household clothes, the anti-bacterial technology of washing machine has developed rapidly. The new models of washing machines in the market have basically added the function of sterilization. In order to thoroughly solve the problem of sterilization and bacteriostasis of washing machines from the source, the distribution of microbial contamination in washing machines should be fully investigated. At present, there is almost no systematic study on the microbial community structure in washing machines in China. Therefore, the purpose of this study is to analyze the bacterial community structure in Chinese household washing machines. To explore the key factors affecting the bacterial community structure of washing machines. Bacterial communities were comprehensively analyzed by high throughput sequencing. Using chao and shannon indexes as indicators, one-way ANOVA was used to explore the key factors affecting the bacterial community structure of washing machines. A total of 2,882,778 tags and 21,265 OTUs from 522 genera were sequenced from 56 washing machine samples. Genus <i>Mycobacterium</i>, <i>Pseudomonas</i>, <i>Brevundimonas</i>, <i>Sphingomonas</i>, <i>Sphingobium</i>, <i>Enhydrobacter</i>, <i>Methylobacterium</i>, <i>Pseudoxanthomonas</i>, <i>Stenotrophomonas</i> and <i>Sphingopyxis</i> were the top ten bacteria genera in abundance. The effects of sources, types, frequency of utilization, sampling locations and service life of washing machines on bacterial diversity in washing machine were systematically analyzed. The statistical analysis showed that service life was an important factor affecting bacterial diversity in washing machine. Our study lays a foundation for directional screening of characteristic microorganisms with targeted characters including malodor-producing, fouling, pathogenic and stress-resistance, the antibacterial evaluation, metabolic mechanism of key characteristic microorganisms as well as antibacterial materials development. At present, the sterilization technology of washing machines has not been fully in combination with the distribution survey of microorganisms in washing machines. According to the specific microorganism distribution condition of the washing machine, the key distribution positions and the types of specific microorganisms contained in different positions, conduct more targeted sterilization treatment. This will help to completely solve the problem of microbial growth in washing machines from the source.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 6","pages":"819 - 831"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-023-10069-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Health and environmental protection are the development trend of household appliances, coupled with the impact of the COVID-19 epidemic in the past few years. Consumers have unprecedented concerns and expectations about the sterilization and disinfection functions of household appliances. As a washing and nursing equipment for household clothes, the anti-bacterial technology of washing machine has developed rapidly. The new models of washing machines in the market have basically added the function of sterilization. In order to thoroughly solve the problem of sterilization and bacteriostasis of washing machines from the source, the distribution of microbial contamination in washing machines should be fully investigated. At present, there is almost no systematic study on the microbial community structure in washing machines in China. Therefore, the purpose of this study is to analyze the bacterial community structure in Chinese household washing machines. To explore the key factors affecting the bacterial community structure of washing machines. Bacterial communities were comprehensively analyzed by high throughput sequencing. Using chao and shannon indexes as indicators, one-way ANOVA was used to explore the key factors affecting the bacterial community structure of washing machines. A total of 2,882,778 tags and 21,265 OTUs from 522 genera were sequenced from 56 washing machine samples. Genus Mycobacterium, Pseudomonas, Brevundimonas, Sphingomonas, Sphingobium, Enhydrobacter, Methylobacterium, Pseudoxanthomonas, Stenotrophomonas and Sphingopyxis were the top ten bacteria genera in abundance. The effects of sources, types, frequency of utilization, sampling locations and service life of washing machines on bacterial diversity in washing machine were systematically analyzed. The statistical analysis showed that service life was an important factor affecting bacterial diversity in washing machine. Our study lays a foundation for directional screening of characteristic microorganisms with targeted characters including malodor-producing, fouling, pathogenic and stress-resistance, the antibacterial evaluation, metabolic mechanism of key characteristic microorganisms as well as antibacterial materials development. At present, the sterilization technology of washing machines has not been fully in combination with the distribution survey of microorganisms in washing machines. According to the specific microorganism distribution condition of the washing machine, the key distribution positions and the types of specific microorganisms contained in different positions, conduct more targeted sterilization treatment. This will help to completely solve the problem of microbial growth in washing machines from the source.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.