BiodegradationPub Date : 2023-04-12DOI: 10.1007/s10532-023-10026-5
Ruijuan Fan, Weixia Xie, Heqin Ma, Mengke Zhu, Kun Ma, Xingfu Yan
{"title":"Isolation of cadmium-resistant microbial strains and their immobilisation of cadmium in soil","authors":"Ruijuan Fan, Weixia Xie, Heqin Ma, Mengke Zhu, Kun Ma, Xingfu Yan","doi":"10.1007/s10532-023-10026-5","DOIUrl":"10.1007/s10532-023-10026-5","url":null,"abstract":"<div><p>Six cadmium (Cd)-resistant microbial strains were isolated and their ability to immobilise Cd<sup>2+</sup> in soil investigated. Cd-1, Cd-2, Cd-5, and Cd-6 were identified as <i>Stenotrophomonas</i> sp., Cd-3 as <i>Achromobacter</i> sp., and Cd-7 as <i>Staphylococcus</i> sp. The six strains showed a wide adaptation range for salinity and a strong tolerance to Cd<sup>2+</sup>. The effects of the initial Cd<sup>2+</sup> concentration (1–100 mg/L), duration (18–72 h), temperature (10–40 °C), and pH (5.0–9.0) on the efficiency of Cd<sup>2+</sup> removal were analysed. The results revealed that the Cd<sup>2+</sup> removal rate was higher at an initial Cd<sup>2+</sup> concentration of 5–100 mg/L than at 1 mg/L. The maximum Cd<sup>2+</sup> removal effect was at a culture duration of 36 h, temperature of 10–35 °C, and pH of 5.0–7.0. X-ray diffraction (XRD) analysis revealed that the Cd<sup>2+</sup> was immobilised by <i>Stenotrophomonas</i> sp. Cd-2 and <i>Staphylococcus</i> sp. Cd-7 through bio-precipitation. X-ray photoelectron spectroscopy (XPS) revealed that the Cd<sup>2+</sup> was adsorbed by <i>Stenotrophomonas</i> sp. Cd-2, <i>Achromobacter</i> sp. Cd-3, and <i>Staphylococcus</i> sp. Cd-7. Fourier transform infrared spectroscopy (FTIR) analysis revealed that the isolates reacted with the Cd<sup>2+</sup> mainly through the O–H, protein N–H, C–N, lipid C–H, fatty acid COO, polysaccharide C–O, P–O, and other functional groups, as well as with lipid molecules on the cell wall surfaces. Scanning electron microscopy (SEM) analysis revealed that there was little difference in the cells after Cd<sup>2+</sup> treatment. The results of the soil remediation experiments indicated that the toxicity of Cd in soil could be effectively reduced using certain strains of microbe.</p><h3>Graphical abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 5","pages":"445 - 459"},"PeriodicalIF":3.6,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4784436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiodegradationPub Date : 2023-04-05DOI: 10.1007/s10532-023-10030-9
Dan Wang, Ruofei Zhu, Jiangfei Lou, Nawon Baek, Xuerong Fan
{"title":"Plasticizer phthalate esters degradation with a laccase from Trametes versicolor: effects of TEMPO used as a mediator and estrogenic activity removal","authors":"Dan Wang, Ruofei Zhu, Jiangfei Lou, Nawon Baek, Xuerong Fan","doi":"10.1007/s10532-023-10030-9","DOIUrl":"10.1007/s10532-023-10030-9","url":null,"abstract":"<div><p>Phthalate esters (PAEs) are toxic and persistent chemicals that are ubiquitous in the environment and have attracted worldwide attention due to their threats to the environment and human health. Dimethyl phthalate (DMP) is a relatively simple structure and one of the most observed PAEs in the environment. This study investigated the degradation of the DMP using <i>Trametes versicolor</i> laccase and its laccase-mediator systems. The degradation effect of laccase alone on DMP was poor, while the laccase-mediator systems can effectively enhance the degradation efficiency. Within 24 h, 45% of DMP (25 mg/L) was degraded in the presence of 0.8 U/mL laccase and 0.053 mM 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO). A certain concentration (1 mM) of metal ions Al<sup>3+</sup>, Cu<sup>2+</sup> or Ca<sup>2+</sup> can positively promote DMP degradation with the laccase-TEMPO system. Moreover, the structure of PAEs also had a great influence on the degradation efficiency. Higher degradation efficiencies were observed when incubating PAEs with short alkyl side chains by the laccase-TEMPO system compared to that with long alkyl side chains. Additionally, the branched-chain PAEs had a better degradation effect than the straight-chain. The estrogenic activity of the DMP solution after reaction was much smaller than that of the original solution. Finally, transformation products ortho-hydroxylated DMP and phthalic acid were identified by GC–MS and the possible degradation pathway was proposed. This study verifies the feasibility of the laccase-TEMPO system to degrade PAEs and provides a reference for exploring more potential value of laccase.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 5","pages":"431 - 444"},"PeriodicalIF":3.6,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4197858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiodegradationPub Date : 2023-03-25DOI: 10.1007/s10532-023-10025-6
Camilla Di Marcantonio, Agostina Chiavola, Alessandra Noce, Elisabetta Straccamore, Andrea Giannuzzi, Jacopo Jirillo, Francesco Gallo, Maria Rosaria Boni
{"title":"A sustainable approach to enhance heavy hydrocarbons removal in landfarming treatment","authors":"Camilla Di Marcantonio, Agostina Chiavola, Alessandra Noce, Elisabetta Straccamore, Andrea Giannuzzi, Jacopo Jirillo, Francesco Gallo, Maria Rosaria Boni","doi":"10.1007/s10532-023-10025-6","DOIUrl":"10.1007/s10532-023-10025-6","url":null,"abstract":"<div><p>The present study aimed to evaluate the best strategy to enhance the degradation rate of heavy petroleum hydrocarbons (HPH) contaminated soil in a landfarming plant. Samples of real contaminated soil, further spiked with HPH, were treated in mesocosm reactors simulating the landfarming system. One reactor was operated without any modification compared to the real landfarming plant. The other three reactors were operated with different strategies to improve the removal rate: biostimulation (BS) through the addition of nitrogen and phosphorus; bioaugmentation (BA) with the inoculation of sludge produced in the treatment of the process water from the oil re-fining plant of the same industrial area; combination of biostimulation and bioaugmentation (BAS). The biostimulation (BS) was the most effective strategy, leading to a reduction of the remediation time by 35% as compared to the traditional treatment. Bioaugmentation (BA) also provided positive effects leading to a reduction of the remediation time by 24%; its performance improved further when the addition of sludge was combined with the increase of phosphorous (BAS). Therefore, the key tool was represented by the phosphorous availability, whereas the application of sludge was most useful to provide waste with a new possibility of reuse, thus fulfilling the principles of the circular economy. The final characterization showed that the treated soil was suitable for reuse in industrial areas according to the legislation in force.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 5","pages":"417 - 430"},"PeriodicalIF":3.6,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10532-023-10025-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4979398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiodegradationPub Date : 2023-03-10DOI: 10.1007/s10532-023-10015-8
Susan N. James, Arya Vijayanandan
{"title":"Recent advances in simultaneous nitrification and denitrification for nitrogen and micropollutant removal: a review","authors":"Susan N. James, Arya Vijayanandan","doi":"10.1007/s10532-023-10015-8","DOIUrl":"10.1007/s10532-023-10015-8","url":null,"abstract":"<div><p>Simultaneous Nitrification and Denitrification (SND) is a promising process for biological nitrogen removal. Compared to conventional nitrogen removal processes, SND is cost-effective due to the decreased structural footprint and low oxygen and energy requirements. This critical review summarizes the current knowledge on SND related to fundamentals, mechanisms, and influence factors. The creation of stable aerobic and anoxic conditions within the flocs, as well as the optimization of dissolved oxygen (DO), are the most significant challenges in SND. Innovative reactor configurations coupled with diversified microbial communities have achieved significant carbon and nitrogen reduction from wastewater. In addition, the review also presents the recent advances in SND for removing micropollutants. The micropollutants are exposed to various enzymes due to the microaerobic and diverse redox conditions present in the SND system, which would eventually enhance biotransformation. This review presents SND as a potential biological treatment process for carbon, nitrogen, and micropollutant removal from wastewater.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 2","pages":"103 - 123"},"PeriodicalIF":3.6,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4427912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiodegradationPub Date : 2023-03-06DOI: 10.1007/s10532-023-10023-8
Caixu Yue, Nan Jia, Xueru Lv, Shenghui Wang
{"title":"Identification of two possible metabolic pathways responsible for the biodegradation of 3, 5, 6-trichloro-2-pyridinol in Micrococcus luteus ML","authors":"Caixu Yue, Nan Jia, Xueru Lv, Shenghui Wang","doi":"10.1007/s10532-023-10023-8","DOIUrl":"10.1007/s10532-023-10023-8","url":null,"abstract":"<div><p>3, 5, 6-Trichloro-2-pyridinol (TCP) is a metabolite of the insecticide chlorpyrifos and the herbicide triclopyr, and it is higher toxic than the parent compounds. Microbially-mediated mineralization appears to be the primary degradative pathway and the important biological process of detoxification. However, little information is available on TCP complete metabolic pathways and mechanisms. In this study, the degradation of TCP was studied with a novel strain <i>Micrococcus luteus</i> ML isolated from a stable TCP degrading microbiota. Strain ML was capable of degrading 61.6% of TCP (50 mg/L) and 35.4% of chlorpyrifos (50 mg/L) at 24 h and 48 h under the optimal conditions (temperature: 35 °C; pH: 7.0), respectively. It could also degrade 3, 5-dichloro-2-pyridone, 6-chloropyridin-2-ol, 2-hydroxypyridine and phoxim when provided as sole carbon and energy sources. Seven TCP intermediate metabolites were detected in strain ML and two possible degradation pathways of TCP were proposed on the basis of LC–MS analysis. Both the hydrolytic-oxidative dechlorination pathway and the denitrification pathway might be involved in TCP biodegradation by strain ML. To the best of our knowledge, this is the first report on two different pathways responsible for TCP degradation in one strain, and this finding also provides novel information for studying the metabolic mechanism of TCP in pure culture.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 4","pages":"371 - 381"},"PeriodicalIF":3.6,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10532-023-10023-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4589767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiodegradationPub Date : 2023-02-25DOI: 10.1007/s10532-023-10016-7
Ahmad Hanis Omar, Khalida Muda, Armstrong Ighodalo Omoregie, Zaiton Abdul Majid, Nur Shahidah Binti Aftar Ali, Farhan Mohd Pauzi
{"title":"Enhancement of biogranules development using magnetized powder activated carbon","authors":"Ahmad Hanis Omar, Khalida Muda, Armstrong Ighodalo Omoregie, Zaiton Abdul Majid, Nur Shahidah Binti Aftar Ali, Farhan Mohd Pauzi","doi":"10.1007/s10532-023-10016-7","DOIUrl":"10.1007/s10532-023-10016-7","url":null,"abstract":"<div><p>Biogranulation has emerged as a viable alternative biological wastewater treatment approach because of its strong biodegradability potential, toxicity tolerance, and biomass retention features. However, this process requires a long duration for biogranules formation to occur. In this study, magnetic powder activated carbon (MPAC) was used as support material in a sequencing batch reactor to enhance biogranules development for wastewater treatment. Two parallel SBRs (designated R1 and R2) were used, with R1 serving as a control without the presence of MPAC while R2 was operated with MPAC. The biodegradability capacity and biomass properties of MPAC biogranules were compared with a control system. The measured diameter of biogranules for R1 and R2 after 8 weeks of maturation were 2.2 mm and 3.4 mm, respectively. The integrity coefficient of the biogranules in R2 was higher (8.3%) than that of R1 (13.4%), indicating that the addition of MPAC improved the structure of the biogranules in R2. The components of extracellular polymeric substances were also higher in R2 than in R1. Scanning electronic microscopy was able to examine the morphological structures of the biogranules which showed there were irregular formations compacted together. However, there were more cavities situated in R1 biogranules (without MPAC) when compared to R2 biogranules (with MPAC). Dye removal reached 65% and 83% in R1 and R2 in the post-development stage. This study demonstrates that the addition of MPAC could shorten and improve biogranules formation. MPAC acted as the support media for microbial growth during the biogranulation developmental process.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 3","pages":"235 - 252"},"PeriodicalIF":3.6,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5331477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiodegradationPub Date : 2023-02-25DOI: 10.1007/s10532-023-10018-5
Ali Ahmad Aghapour, Nazila Alizadeh, Hassan Khorsandi
{"title":"Biological degradation and mineralization of tetracycline antibiotic using SBR equipped with a vertical axially rotating biological bed (SBR-VARB)","authors":"Ali Ahmad Aghapour, Nazila Alizadeh, Hassan Khorsandi","doi":"10.1007/s10532-023-10018-5","DOIUrl":"10.1007/s10532-023-10018-5","url":null,"abstract":"<div><p>Tetracycline (TC) is a widely used antibiotic with a complex aromatic chemical structure and is highly resistant to biodegradation. In this study, an SBR equipped with a vertical axially rotating biological bed (SBR-VARB) was used for the biodegradation and mineralization of TC. SBR-VARB showed high efficiency in removing TC (97%), total phenolic compounds (TP) (95%), and COD (85%) under optimal operating conditions (TC = 50 mg/L, HRT = 1.75 d, and OLR = 36 g COD/m<sup>3</sup> d). The SBR-VARB was able to treat higher concentrations of TC in shorter HRT than reported in previous studies. The contribution of VARB to improve SBR efficiency in removing TC, TP, and COD was 16, 36, and 48%, respectively. Intermediate compounds formed during the biodegradation of TC were identified using GC–MS under the optimal operating conditions of the bioreactor. These are mainly organic compounds with linear chemical structures. Based on the complete biodegradation of TC under the optimal operating conditions of the bioreactor, 93% and 36% of the chlorine and nitrogen atoms in the chemical structure of TC appeared in the wastewater, respectively. According to the sequence analysis of 16SrDNA, <i>Pseudomonas</i> sp., <i>Kocuria Polaris</i>, and <i>Staphylococcus</i> sp. were identified in the biofilm of VARB and the suspended biomass of the bioreactor. Therefore, SBR-VARB showed high efficiency in the biodegradation and mineralization of TC and can be used as a suitable option for treating wastewater containing antibiotics and other toxic compounds.\u0000</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 4","pages":"325 - 340"},"PeriodicalIF":3.6,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10532-023-10018-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4963532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fungal biodegradation of chlorinated herbicides: an overview with an emphasis on 2,4-D in Argentina","authors":"Karen Magnoli, Cecilia Carranza, Melisa Aluffi, Carina Magnoli, Carla Barberis","doi":"10.1007/s10532-023-10022-9","DOIUrl":"10.1007/s10532-023-10022-9","url":null,"abstract":"<div><p>Chlorinated herbicides are one of the main types of pesticide used in agriculture. In Argentina, 2,4-dichlorophenoxyacetic acid (2,4-D) is the most applied herbicide for the control of broadleaf weeds, but the risks it poses for the environment and human health are cause for great concern. A promising technology to remove this kind of pollutants, or neutralize them in such a way that they become less or non-toxic, is the use of degrading or detoxifying microorganisms from contaminated sites. Filamentous fungi can bioremediate xenobiotics thanks to their efficient enzymatic machinery. However, most studies on the degradation of 2,4-D have been carried out with bacteria, and little is known about whether it can be efficiently biodegraded by fungi. In the environment, fungal strains and native microbiota may detoxify contaminants through mechanisms like biosorption, bioabsortion, biotransformation, and/or degradation. Whether these processes occur separately or simultaneously depends on the metabolic ability of the strains that conform the microbial community. Another important concern when attempting to introduce detoxifying microorganisms into a contaminated environment is the GRAS (“Generally Recognized As Safe”) assessment or status. These are studies that help predict a biodegrading microorganism’s pathogenicity, toxicity<b>,</b> and infectivity before in situ application. This application, moreover, is regulated by different legal frameworks. The present review aims to outline the main aspects of 2,4-D degradation by fungi, and to summarize the current state of research on the topic in Argentina.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 3","pages":"199 - 214"},"PeriodicalIF":3.6,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10532-023-10022-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4965222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiodegradationPub Date : 2023-02-25DOI: 10.1007/s10532-023-10021-w
Aniko Konya, Brice A. Fiddler, Olivia Bunch, Kendra Z. Hess, Cade Ferguson, Mark J. Krzmarzick
{"title":"Lead or cadmium co-contamination alters benzene and toluene degrading bacterial communities","authors":"Aniko Konya, Brice A. Fiddler, Olivia Bunch, Kendra Z. Hess, Cade Ferguson, Mark J. Krzmarzick","doi":"10.1007/s10532-023-10021-w","DOIUrl":"10.1007/s10532-023-10021-w","url":null,"abstract":"<div><p>Co-contamination of hydrocarbons with heavy metals in soils often complicates and hinders bioremediation. A comprehensive characterization of site-specific degraders at contaminated sites can help determine if in situ bioremediation processes are sufficient. This study aimed to identify differences in benzene and toluene degradation rates and the microbial communities enriched under aerobic conditions when different concentrations of Cd and Pb are introduced. Microcosms were used to study the degradation of 0.23 mM benzene or 0.19 mM toluene under various concentrations of Pb (up to 240 µM) and Cd (up to 440 µM). Soil collected from a stormwater retention basin receiving runoff from a large parking lot was utilized to seed the microcosms. The hydrocarbon degradation time and rates were measured. After further rounds of amendment and degradation of benzene and toluene, 16S rRNA gene amplicon sequencing and quantitative PCR were used to ascertain the microbial communities enriched under the various concentrations of the heavy metals. The initial degradation time for toluene and benzene was 7 to 9 days and 10 to 13 days, respectively. Degradation rates were similar for each hydrocarbon despite the concentration and presence of metal co-contaminant, however, the enriched microbial communities under each condition differed. Microcosms without metal co-contaminant contained a diversity of putative benzene and toluene degrading bacteria. Cd strongly reduced the richness of the microbial communities. With higher levels of heavy metals, genera such as <i>Ralstonia</i>, <i>Cupriavidus</i>, <i>Azoarcus</i>, and <i>Rhodococcus</i> became more dominant under various conditions. The study finds that highly efficient benzene- and toluene-degrading consortia can develop under variations of heavy metal co-contamination, but the consortia are dependent on the heavy metal type and concentrations.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 4","pages":"357 - 369"},"PeriodicalIF":3.6,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10532-023-10021-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4964078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiodegradationPub Date : 2023-02-21DOI: 10.1007/s10532-023-10024-7
Gulay Bayramoglu, Murat Kilic, Mehmet Yakup Arica
{"title":"Tramates trogii biomass in carboxymethylcellulose-lignin composite beads for adsorption and biodegradation of bisphenol A","authors":"Gulay Bayramoglu, Murat Kilic, Mehmet Yakup Arica","doi":"10.1007/s10532-023-10024-7","DOIUrl":"10.1007/s10532-023-10024-7","url":null,"abstract":"<div><p><i>Tramates trogii biomass</i> was immobilized in carboxymethyl cellulose-lignin composite beads via cross-linking with Fe(III) ions (i.e., Fe(III)-CMC@Lig(1–4)@FB). The composite beads formulations were used for the adsorption and degradation of bisphenol A (BPA) using the free fungal biomass as a control system. The maximum adsorption capacity of the free fungal biomass and Fe(III)-CMC@Lig-3@FB for BPA was found to be 57.8 and 95.6, mg/g, respectively. The degradation rates of BPA were found to be 87.8 and 89.6% for the free fungal biomass and Fe(III)CMC@Lig-3@FB for 72 h in a batch reactor, respectively. Adsorption of BPA on the free fungal biomass and Fe(III)CMC@Lig-3@FB fungal preparations described by the Langmuir and Temkin isotherm models, and the pseudo-second-order kinetic model. The values of Gibbs free energy of adsorption (ΔG°) were − 20.7 and − 25.8 kJ/mol at 298 K for BPA on the free fungal biomass and Fe(III)-CMC@Lig-3@FB beads, respectively. Moreover, the toxicities of the BPA and degradation products were evaluated with three different test organisms: (i) a freshwater micro-crustacean (<i>Daphnia magna</i>), (ii) a freshwater algae (<i>Chlamydomonas reinhardti</i>), and (iii) a Turkish winter wheat seed (<i>Triticum aestivum</i> L.). After treatment with the Fe(III)CMC@Lig-3@FB formulation, the degradation products had not any significant toxic effect compared to pure BPA. This work shows that the prepared composite bioactive system had a high potential for degradation of BPA from an aqueous medium without producing toxic end-products. Thus, it could be a good candidate for environmentally safe biological methods.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 3","pages":"263 - 281"},"PeriodicalIF":3.6,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4819922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}