Biodegradation最新文献

筛选
英文 中文
Potential of Antarctic lipase from Acinetobacter johnsonii Ant12 for treatment of lipid-rich wastewater: screening, production, properties and applications 约翰不动杆菌Ant12南极脂肪酶处理高脂废水的潜力:筛选、生产、性质和应用
IF 3.6 4区 生物学
Biodegradation Pub Date : 2023-06-24 DOI: 10.1007/s10532-023-10041-6
Vijay D. Nimkande, Kannan Krishnamurthi, Amit Bafana
{"title":"Potential of Antarctic lipase from Acinetobacter johnsonii Ant12 for treatment of lipid-rich wastewater: screening, production, properties and applications","authors":"Vijay D. Nimkande,&nbsp;Kannan Krishnamurthi,&nbsp;Amit Bafana","doi":"10.1007/s10532-023-10041-6","DOIUrl":"10.1007/s10532-023-10041-6","url":null,"abstract":"<div><p>The present study aimed to screen and optimize lipase production by the Antarctic strain <i>Acinetobacter johnsonii</i> Ant12 for lipid-rich wastewater treatment. Lipase production was successfully enhanced threefold through optimization of culture conditions. The optimum crude lipase activity was observed at 50 °C with high stability in a wide temperature range. The lipase also exhibited high activity and stability in the presence of solvents, metal ions, and surfactants. The crude lipase was used for the treatment of lipid-rich wastewater, which poses a significant challenge, as traditional removal methods are often inefficient or non-eco-friendly. In this study, bioaugmentation with Ant12 resulted in substantial lipid reduction in synthetic as well as real-world wastewater. Multiple linear regression analysis showed that lipid concentration and time were the most significant factors influencing lipid degradation. Bioaugmentation of real-world wastewater with Ant12 cells resulted in 84% removal of lipids in 72 h, while its crude lipase degraded 73.7% of lipids after 24 h. Thus, the specific rate of lipid degradation was higher for crude lipase (0.095/h) than the whole cell treatment (0.031/h). Economic analysis revealed that crude lipase production was much cheaper, faster and more eco-friendly than purified or partially purified lipase production, which justifies its use in wastewater treatment. The high activity of enzyme also implicates its application as a detergent additive. In our knowledge, it is the first study to establish <i>A. johnsonii</i> isolate from Antarctica for lipid-rich wastewater treatment.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 6","pages":"549 - 566"},"PeriodicalIF":3.6,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41080080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An indigenous tubular ceramic membrane integrated bioreactor system for biodegradation of phthalates mixture from contaminated wastewater 国产管状陶瓷膜集成生物反应器系统用于污染废水中邻苯二甲酸酯混合物的生物降解
IF 3.6 4区 生物学
Biodegradation Pub Date : 2023-06-24 DOI: 10.1007/s10532-023-10040-7
Dipak Kumar Kanaujiya, Madu Purnima, G. Pugazhenthi, Tapan Kumar Dutta, Kannan Pakshirajan
{"title":"An indigenous tubular ceramic membrane integrated bioreactor system for biodegradation of phthalates mixture from contaminated wastewater","authors":"Dipak Kumar Kanaujiya,&nbsp;Madu Purnima,&nbsp;G. Pugazhenthi,&nbsp;Tapan Kumar Dutta,&nbsp;Kannan Pakshirajan","doi":"10.1007/s10532-023-10040-7","DOIUrl":"10.1007/s10532-023-10040-7","url":null,"abstract":"<div><p>Endocrine-disrupting phthalates (EDPs) are widely used as plasticizers for the manufacture of different plastics and polyvinyl chloride by providing flexibility and mechanical strength. On the other hand, they are categorized under priority pollutants list due to their threat to human health and the environment. This study examined biodegradation of a mixture of dimethyl, diethyl, dibutyl, benzyl butyl, di-2-ethylhexyl, and di-n-octyl phthalates using a CSTB (continuous stirred tank bioreactor) operated under batch, fed-batch, continuous, and continuous with biomass recycle operation modes. For operating the CSTB under biomass recycle mode, microfiltration using an indigenous tubular ceramic membrane was employed. Ecotoxicity assessment of the treated water was carried out to evaluate the toxicity removal efficiency by the integrated bioreactor system. From the batch experiments, the EDPs cumulative degradation values were 90 and 75% at 1250 and 1500 mg/L total initial concentration of the mixture, respectively, whereas complete degradation was achieved at 750 mg/L. In the fed-batch study, 93% degradation was achieved at 1500 mg/L total initial concentration of the mixture. In continuous operation mode, 94 and 85% degradation efficiency values were achieved at 43.72 and 52.08 mg/L⋅h inlet loading rate of phthalate mixture. However, continuous feeding with 100% biomass recycle revealed complete degradation at 41.67 mg/L⋅h inlet loading rate within the 84 h operation period. High seed germination index and low mortality percentage of brine shrimps observed with phthalate degraded water from the integrated bioreactor system revealed its excellent potential in the treatment and toxicity removal of phthalates contaminated environment.\u0000</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 6","pages":"533 - 548"},"PeriodicalIF":3.6,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41080077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microorganisms that produce enzymes active on biodegradable polyesters are ubiquitous 在生物可降解聚酯上产生活性酶的微生物无处不在
IF 3.6 4区 生物学
Biodegradation Pub Date : 2023-06-24 DOI: 10.1007/s10532-023-10031-8
Francesco Degli-Innocenti, Tony Breton, Selene Chinaglia, Ermes Esposito, Marco Pecchiari, Andrea Pennacchio, Alessandro Pischedda, Maurizio Tosin
{"title":"Microorganisms that produce enzymes active on biodegradable polyesters are ubiquitous","authors":"Francesco Degli-Innocenti,&nbsp;Tony Breton,&nbsp;Selene Chinaglia,&nbsp;Ermes Esposito,&nbsp;Marco Pecchiari,&nbsp;Andrea Pennacchio,&nbsp;Alessandro Pischedda,&nbsp;Maurizio Tosin","doi":"10.1007/s10532-023-10031-8","DOIUrl":"10.1007/s10532-023-10031-8","url":null,"abstract":"<div><p>Biodegradability standards measure ultimate biodegradation of polymers by exposing the material under test to a natural microbial inoculum. Available tests developed by the International Organization for Standardization (ISO) use inoculums sampled from different environments e.g. soil, marine sediments, seawater. Understanding whether each inoculum is to be considered as microbially unique or not can be relevant for the interpretation of tests results. In this review, we address this question by consideration of the following: (i) the chemical nature of biodegradable plastics (virtually all biodegradable plastics are polyesters) (ii) the diffusion of ester bonds in nature both in simple molecules and in polymers (ubiquitous); (iii) the diffusion of decomposers capable of producing enzymes, called esterases, which accelerate the hydrolysis of esters, including polyesters (ubiquitous); (iv) the evidence showing that synthetic polyesters can be depolymerized by esterases (large and growing); (v) the evidence showing that these esterases are ubiquitous (growing and confirmed by bioinformatics studies). By combining the relevant available facts it can be concluded that if a certain polyester shows ultimate biodegradation when exposed to a natural inoculum, it can be considered biodegradable and need not be retested using other inoculums. Obviously, if the polymer does not show ultimate biodegradation it must be considered recalcitrant, until proven otherwise.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 6","pages":"489 - 518"},"PeriodicalIF":3.6,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41080075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradation of di-2-ethylhexyl phthalate by Bacillus firmus MP04 strain: parametric optimization using full factorial design 固体芽孢杆菌MP04菌株降解邻苯二甲酸二-2-乙基己酯的全因子设计参数优化
IF 3.6 4区 生物学
Biodegradation Pub Date : 2023-06-24 DOI: 10.1007/s10532-023-10043-4
Madhavi Rashmi, Tanuja Singh, Nitesh Singh Rajput, Shweta Kulshreshtha
{"title":"Biodegradation of di-2-ethylhexyl phthalate by Bacillus firmus MP04 strain: parametric optimization using full factorial design","authors":"Madhavi Rashmi,&nbsp;Tanuja Singh,&nbsp;Nitesh Singh Rajput,&nbsp;Shweta Kulshreshtha","doi":"10.1007/s10532-023-10043-4","DOIUrl":"10.1007/s10532-023-10043-4","url":null,"abstract":"<div><p>Di-2-ethylhexyl phthalate (DEHP) is used as a plasticizer in making plastics and released from landfills. This study attempted to degrade DEHP using microbial isolates. Isolates of <i>Bacillus</i> spp. were tested for their efficacy in degrading DEHP. Degradation was assessed using liquid chromatography-mass spectrometry (LC–MS). The most efficient DEHP degradation was achieved by <i>Bacillus firmus</i> MP04, which has been identified as <i>Bacillus firmus</i> MP04. This strain was found to use DEHP as the sole source of carbon without carbon source supplementation. Full factorial design was used to optimize the conditions for DEHP degradation which revealed the suitability of pH 7, 5% salt concentration, 20 to 37 °C temperature, and yeast extract as a nitrogen source. LC–MS elucidated the possible degradation mechanism via benzoic acid formation. However, prolonged incubation formed a typical compound denatonium benzoate due to reactions with other compounds. As maximum degradation was achieved in 4 days, prolonged incubation is not suggested. It can be concluded that new strain <i>Bacillus firmus</i> MP04 is the most efficient strain among all the tested strains for DEHP degradation.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 6","pages":"567 - 579"},"PeriodicalIF":3.6,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10532-023-10043-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41080221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of landfill food waste diversion: a focus on microbial populations and methane generation 垃圾填埋场食物垃圾转移的影响:对微生物种群和甲烷生成的关注
IF 3.6 4区 生物学
Biodegradation Pub Date : 2023-06-20 DOI: 10.1007/s10532-023-10034-5
Giles Chickering, Max J. Krause, Amy Schwarber
{"title":"Effects of landfill food waste diversion: a focus on microbial populations and methane generation","authors":"Giles Chickering,&nbsp;Max J. Krause,&nbsp;Amy Schwarber","doi":"10.1007/s10532-023-10034-5","DOIUrl":"10.1007/s10532-023-10034-5","url":null,"abstract":"<div><p>The early stages of municipal solid waste degradation in landfills are complex harmonies of physical, biological, and chemical interactions that all work in concert to degrade trash into smaller and more stable materials. While many approaches have been taken to understand parts of this process, this new work attempted to simulate the early stages of landfills in controlled laboratory environments while observing the impacts of food waste content at different concentrations. This was completed by operating landfill lysimeters in a laboratory for approximately 1000 days, simulating landfill interior conditions while measuring the gas and liquid byproducts to study the impact of food waste presence in these environments. Metagenomic analysis after the experiment identified over 18,000 individual species and allowed comparison with past studies while also surveying microorganisms present in landfills. Similar populations found in past studies suggested the current experiments successfully replicated landfill conditions. While food waste diversion had a discernable impact on gas production, it did not show a clear and consistent impact on the microbiomes identified in this study.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 5","pages":"477 - 488"},"PeriodicalIF":3.6,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10532-023-10034-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4794553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microalgal conversion of whey and lactose containing substrates: current state and challenges 含有乳清和乳糖底物的微藻转化:现状和挑战
IF 3.6 4区 生物学
Biodegradation Pub Date : 2023-06-17 DOI: 10.1007/s10532-023-10033-6
Sergejs Kolesovs, Pavels Semjonovs
{"title":"Microalgal conversion of whey and lactose containing substrates: current state and challenges","authors":"Sergejs Kolesovs,&nbsp;Pavels Semjonovs","doi":"10.1007/s10532-023-10033-6","DOIUrl":"10.1007/s10532-023-10033-6","url":null,"abstract":"<div><p>Currently dairy processing by-products, such as whey, still propose a significant threat to the environment if unproperly disposed. Microalgal bioconversion of such lactose containing substrates can be used for production of valuable microalgae-derived bio-products as well as for significant reduction of environmental risks. Moreover, it could significantly reduce microalgae biomass production costs, being a significant obstacle in commercialization of many microalgae species. This review summarizes current knowledge on the use of lactose containing substrates, e.g. whey, for the production of value-added products by microalgae, including information on producer cultures, fermentation methods and cultivation conditions, bioprocess productivity and ability of microalgal cultures to produce β-galactosidases. It can be stated, that despite several limitations lactose-containing substrates can be successfully used for both—the production of microalgal biomass and removal of high amounts of excess nutrients from the cultivation media. Moreover, co-cultivation of microalgae and other microorganisms can further increase the removal of nutrients and the production of biomass. Further investigations on lactose metabolism by microalgae, selection of suitable strains and optimisation of the cultivation process is required in order to enable large-scale microalgae production on these substrates.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 5","pages":"405 - 416"},"PeriodicalIF":3.6,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10532-023-10033-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4690095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Influence of growth substrate and contaminant mixtures on the degradation of BTEX and MTBE by Rhodococcus rhodochrous ATCC strain 21198 生长基质和污染物混合物对Rhodococcus rhodochrous ATCC菌株21198降解BTEX和MTBE的影响
IF 3.6 4区 生物学
Biodegradation Pub Date : 2023-06-17 DOI: 10.1007/s10532-023-10037-2
Juliana M. Huizenga, Lewis Semprini
{"title":"Influence of growth substrate and contaminant mixtures on the degradation of BTEX and MTBE by Rhodococcus rhodochrous ATCC strain 21198","authors":"Juliana M. Huizenga,&nbsp;Lewis Semprini","doi":"10.1007/s10532-023-10037-2","DOIUrl":"10.1007/s10532-023-10037-2","url":null,"abstract":"<div><p>The degradation of the prevalent environmental contaminants benzene, toluene, ethylbenzene, and xylenes (BTEX) along with a common co-contaminant methyl tert-butyl ether (MTBE) by <i>Rhodococcus rhodochrous</i> ATCC Strain 21198 was investigated. The ability of 21198 to degrade these contaminants individually and in mixtures was evaluated with resting cells grown on isobutane, 1-butanol, and 2-butanol. Growth of 21198 in the presence of BTEX and MTBE was also studied to determine the growth substrate that best supports simultaneous microbial growth and contaminants degradation. Cells grown on isobutane, 1-butanol, and 2-butanol were all capable of degrading the contaminants, with isobutane grown cells exhibiting the most rapid degradation rates and 1-butanol grown cells exhibiting the slowest. However, in conditions where BTEX and MTBE were present during microbial growth, 1-butanol was determined to be an effective substrate for supporting concurrent growth and contaminant degradation. Contaminant degradation was found to be a combination of metabolic and cometabolic processes. Evidence for growth of 21198 on benzene and toluene is presented along with a possible transformation pathway. MTBE was cometabolically transformed to tertiary butyl alcohol, which was also observed to be transformed by 21198. This work demonstrates the possible utility of primary and secondary alcohols to support biodegradation of monoaromatic hydrocarbons and MTBE. Furthermore, the utility of 21198 for bioremediation applications has been expanded to include BTEX and MTBE.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 5","pages":"461 - 475"},"PeriodicalIF":3.6,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4684824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of copper, arsenic and nickel on pyrite-based autotrophic denitrification 铜、砷和镍对黄铁矿自养反硝化作用的影响。
IF 3.1 4区 生物学
Biodegradation Pub Date : 2023-04-28 DOI: 10.1007/s10532-023-10027-4
Maria F. Carboni, Sonia Arriaga, Piet N. L. Lens
{"title":"Effect of copper, arsenic and nickel on pyrite-based autotrophic denitrification","authors":"Maria F. Carboni,&nbsp;Sonia Arriaga,&nbsp;Piet N. L. Lens","doi":"10.1007/s10532-023-10027-4","DOIUrl":"10.1007/s10532-023-10027-4","url":null,"abstract":"<div><p>Pyritic minerals generally occur in nature together with other trace metals as impurities, that can be released during the ore oxidation. To investigate the role of such impurities, the presence of copper (Cu(II)), arsenic (As(III)) and nickel (Ni(II)) during pyrite mediated autotrophic denitrification has been explored in this study at 30 °C with a specialized microbial community of denitrifiers as inoculum. The three metal(loid)s were supplemented at an initial concentration of 2, 5, and 7.5 ppm and only Cu(II) had an inhibitory effect on the autotrophic denitrification. The presence of As(III) and Ni(II) enhanced the nitrate removal efficiency with autotrophic denitrification rates between 3.3 [7.5 ppm As(III)] and 1.6 [7.5 ppm Ni(II)] times faster than the experiment without any metal(loid) supplementation. The Cu(II) batches, instead, decreased the denitrification kinetics with 16, 40 and 28% compared to the no-metal(loid) control for the 2, 5 and 7.5 ppm incubations, respectively. The kinetic study revealed that autotrophic denitrification with pyrite as electron donor, also with Cu(II) and Ni(II) additions, fits better a zero-order model, while the As(III) incubation followed first-order kinetic. The investigation of the extracellular polymeric substances content and composition showed more abundance of proteins, fulvic and humic acids in the metal(loid) exposed biomass.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 1","pages":"101 - 114"},"PeriodicalIF":3.1,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10774168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9362412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association of Laccase from Bacillus cereus O2-B and Pseudomonas aeruginosa O1-P with the bio-degradation of polymers: an in vitro to in silico approach 蜡样芽孢杆菌O2-B和铜绿假单胞菌O1-P漆酶与聚合物生物降解的关系:体外到体内的方法
IF 3.6 4区 生物学
Biodegradation Pub Date : 2023-04-14 DOI: 10.1007/s10532-023-10028-3
M Shafana Farveen, Thirumurthy Madhavan, Rajnish Narayanan
{"title":"Association of Laccase from Bacillus cereus O2-B and Pseudomonas aeruginosa O1-P with the bio-degradation of polymers: an in vitro to in silico approach","authors":"M Shafana Farveen,&nbsp;Thirumurthy Madhavan,&nbsp;Rajnish Narayanan","doi":"10.1007/s10532-023-10028-3","DOIUrl":"10.1007/s10532-023-10028-3","url":null,"abstract":"<div><p>Plastic accumulation has become a serious environmental threat. Mitigation of plastic is important to save the ecosystem of our planet. With current research being focused on microbial degradation of plastics, microbes with the potential to degrade polyethylene were isolated in this study. In vitro studies were performed to define the correlation between the degrading capability of the isolates and laccase, a common oxidase enzyme. Instrumental analyses were used to evaluate morphological and chemical modifications in polyethylene, which demonstrated a steady onset of the degradation process in case of both isolates, <i>Pseudomonas aeruginosa</i> O1-P and <i>Bacillus cereus</i> O2-B. To understand the efficiency of laccase in degrading other common polymers, in silico approach was employed, for which 3D structures of laccase in both the isolates were constructed via homology modeling and molecular docking was performed, revealing that the enzyme laccase can be exploited to degrade a wide range of polymers.</p><h3>Graphical abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 4","pages":"383 - 403"},"PeriodicalIF":3.6,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4559449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Effect of ultra-violet light radiation on Scenedesmus vacuolatus growth kinetics, metabolic performance, and preliminary biodegradation study 紫外线辐射对空泡藻(Scenedesmus vacuolatus)生长动力学、代谢性能和初步生物降解研究的影响。
IF 3.1 4区 生物学
Biodegradation Pub Date : 2023-04-13 DOI: 10.1007/s10532-023-10029-2
Stella B. Eregie, Isaac A. Sanusi, Gueguim E. B. Kana, Ademola O. Olaniran
{"title":"Effect of ultra-violet light radiation on Scenedesmus vacuolatus growth kinetics, metabolic performance, and preliminary biodegradation study","authors":"Stella B. Eregie,&nbsp;Isaac A. Sanusi,&nbsp;Gueguim E. B. Kana,&nbsp;Ademola O. Olaniran","doi":"10.1007/s10532-023-10029-2","DOIUrl":"10.1007/s10532-023-10029-2","url":null,"abstract":"<div><p>This study presents the effect of ultra-violet (UV) light radiation on the process kinetics, metabolic performance, and biodegradation capability of <i>Scenedesmus vacuolatus</i>. The impact of the UV radiation on <i>S. vacuolatus</i> morphology, chlorophyll, carotenoid, carbohydrates, proteins, lipid accumulation, growth rate, substrate affinity and substrate versatility were evaluated. Thereafter, a preliminary biodegradative potential of UV-exposed <i>S. vacuolatus</i> on spent coolant waste (SCW) was carried out based on dehydrogenase activity (DHA) and total petroleum hydrocarbon degradation (TPH). Pronounced structural changes were observed in <i>S. vacuolatus</i> exposed to UV radiation for 24 h compared to the 2, 4, 6, 12 and 48 h UV exposure. Exposure of <i>S. vacuolatus</i> to UV radiation improved cellular chlorophyll (chla = 1.89-fold, chlb = 2.02-fold), carotenoid (1.24-fold), carbohydrates (4.62-fold), proteins (1.44-fold) and lipid accumulations (1.40-fold). In addition, the 24 h UV exposed <i>S. vacuolatus</i> showed a significant increase in substrate affinity (1/Ks) (0.959), specific growth rate (µ) (0.024 h<sup>−1</sup>) and biomass accumulation (0.513 g/L) by 1.50, 2 and 1.9-fold respectively. Moreover, enhanced DHA (55%) and TPH (100%) degradation efficiency were observed in UV-exposed <i>S. vacuolatus</i>. These findings provided major insights into the use of UV radiation to enhance <i>S. vacuolatus</i> biodegradative performance towards sustainable green environment negating the use of expensive chemicals and other unfriendly environmental practices.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 1","pages":"71 - 86"},"PeriodicalIF":3.1,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10774200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9283424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信