Myung Hwangbo, Rachael Rezes, Kung-Hui Chu, Paul B. Hatzinger
{"title":"Evaluation of microbial community dynamics and chlorinated solvent biodegradation in methane-amended microcosms from an acidic aquifer","authors":"Myung Hwangbo, Rachael Rezes, Kung-Hui Chu, Paul B. Hatzinger","doi":"10.1007/s10532-024-10103-3","DOIUrl":null,"url":null,"abstract":"<div><p>Anaerobic bioremediation is rarely an effective strategy to treat chlorinated ethenes such as trichloroethene (TCE) in acidic aquifers because partial dechlorination typically results in accumulation of daughter products. Methanotrophs have the capability of oxidizing TCE and other chlorinated volatile organic compounds (CVOCs) to non-toxic products, but their occurrence, diversity, and biodegradation capabilities in acidic environments are largely unknown. This study investigated the impacts of different methane (CH<sub>4</sub>) concentrations and the presence of CVOCs on the community of acidophilic methanotrophs in microcosms prepared from acidic aquifer samples collected upgradient and downgradient of a mulch barrier installed to promote in-situ anaerobic CVOC biodegradation in Maryland, USA. The ability of indigenous methanotrophs to biodegrade CVOCs was also evaluated. Results of stable isotope probing (SIP) and Next Generation Sequencing (NGS) showed that the microbial communities in the microcosms varied by location and were affected by both CH<sub>4</sub> concentration and the presence of different CVOCs, many of which were biodegraded by the indigenous methanotrophs. Data indicate the likelihood of aerobic cometabolic degradation of CVOCs downgradient of the mulch barrier designed for anaerobic treatment. The study extends the overall knowledge of acidophilic methanotrophs in groundwater and shows that these bacteria have significant potential for degrading CVOCs even at low CH<sub>4</sub> concentrations.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-024-10103-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Anaerobic bioremediation is rarely an effective strategy to treat chlorinated ethenes such as trichloroethene (TCE) in acidic aquifers because partial dechlorination typically results in accumulation of daughter products. Methanotrophs have the capability of oxidizing TCE and other chlorinated volatile organic compounds (CVOCs) to non-toxic products, but their occurrence, diversity, and biodegradation capabilities in acidic environments are largely unknown. This study investigated the impacts of different methane (CH4) concentrations and the presence of CVOCs on the community of acidophilic methanotrophs in microcosms prepared from acidic aquifer samples collected upgradient and downgradient of a mulch barrier installed to promote in-situ anaerobic CVOC biodegradation in Maryland, USA. The ability of indigenous methanotrophs to biodegrade CVOCs was also evaluated. Results of stable isotope probing (SIP) and Next Generation Sequencing (NGS) showed that the microbial communities in the microcosms varied by location and were affected by both CH4 concentration and the presence of different CVOCs, many of which were biodegraded by the indigenous methanotrophs. Data indicate the likelihood of aerobic cometabolic degradation of CVOCs downgradient of the mulch barrier designed for anaerobic treatment. The study extends the overall knowledge of acidophilic methanotrophs in groundwater and shows that these bacteria have significant potential for degrading CVOCs even at low CH4 concentrations.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.