Ahmed Y. Radeef, Aya A. Najim, Haneen A. Karaghool, Zaid H. Jabbar
{"title":"Sustainable kitchen wastewater treatment with electricity generation using upflow biofilter-microbial fuel cell system","authors":"Ahmed Y. Radeef, Aya A. Najim, Haneen A. Karaghool, Zaid H. Jabbar","doi":"10.1007/s10532-024-10087-0","DOIUrl":null,"url":null,"abstract":"<div><p>The microbial fuel cell (MFC) is considered a modern technology used for treating wastewater and recovering electrical energy. In this study, a new dual technology combining MFC and a specialized biofilter was used. The anodic materials in the system were crushed graphite, either without coating (UFB-MFC) or coated with nanomaterials (nano-UFB-MFC). This biofilter served as a barrier to retain and remove turbidity and suspended solids, while also facilitating the role of bacteria in the removal of organic pollutants, phosphates, nitrates, sulfates, oil and greases. The results demonstrated that both systems exhibited high efficiency in treating kitchen wastewater, specifically greywater and dishwashing wastewater with high detergent concentrations. The removal efficiencies of COD, oil and grease, suspended solids, turbidity, nitrates, sulfates, and phosphates in first UFB-MFC were found to be 88, 95, 89, 86, 87, 75, and 94%, respectively, and in Nano-UFB-MFC were 86, 99, 95, 91, 81, 88, and 95%, respectively, with a high efficiency in recovering bioenergy reaching a value of 1.8 and 1.5 A m<sup>−3</sup>, respectively. The results of this study demonstrate the potential for developing MFC and utilizing it as a domestic system to mitigate pollution risks before discharging wastewater into the sewer network.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 6","pages":"893 - 906"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-024-10087-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The microbial fuel cell (MFC) is considered a modern technology used for treating wastewater and recovering electrical energy. In this study, a new dual technology combining MFC and a specialized biofilter was used. The anodic materials in the system were crushed graphite, either without coating (UFB-MFC) or coated with nanomaterials (nano-UFB-MFC). This biofilter served as a barrier to retain and remove turbidity and suspended solids, while also facilitating the role of bacteria in the removal of organic pollutants, phosphates, nitrates, sulfates, oil and greases. The results demonstrated that both systems exhibited high efficiency in treating kitchen wastewater, specifically greywater and dishwashing wastewater with high detergent concentrations. The removal efficiencies of COD, oil and grease, suspended solids, turbidity, nitrates, sulfates, and phosphates in first UFB-MFC were found to be 88, 95, 89, 86, 87, 75, and 94%, respectively, and in Nano-UFB-MFC were 86, 99, 95, 91, 81, 88, and 95%, respectively, with a high efficiency in recovering bioenergy reaching a value of 1.8 and 1.5 A m−3, respectively. The results of this study demonstrate the potential for developing MFC and utilizing it as a domestic system to mitigate pollution risks before discharging wastewater into the sewer network.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.