Annual Review of Vision Science最新文献

筛选
英文 中文
Using Illusions to Track the Emergence of Visual Perception. 利用幻觉追踪视觉感知的产生。
IF 5 2区 医学
Annual Review of Vision Science Pub Date : 2024-09-01 Epub Date: 2024-09-19 DOI: 10.1146/annurev-vision-103023-012730
Patrick Cavanagh
{"title":"Using Illusions to Track the Emergence of Visual Perception.","authors":"Patrick Cavanagh","doi":"10.1146/annurev-vision-103023-012730","DOIUrl":"10.1146/annurev-vision-103023-012730","url":null,"abstract":"<p><p>Everybody loves illusions. At times, the content on the internet seems to be mostly about illusions-shoes, dresses, straight lines looking bent. This attraction has a long history. Almost 2,000 years ago, Ptolemy marveled at how the sail of a distant boat could appear convex or concave. This sense of marvel continues to drive our fascination with illusions; indeed, few other corners of science can boast of such a large reach. However, illusions not only draw in the crowds; they also offer insights into visual processes. This review starts with a simple definition of illusions as conflicts between perception and cognition, where what we see does not agree with what we believe we should see. This mismatch can be either because cognition has misunderstood how perception works or because perception has misjudged the visual input. It is the perceptual errors that offer the chance to track the development of perception across visual regions. Unfortunately, the effects of illusions in different brain regions cannot be isolated in any simple way: Top-down projections from attention broadcast the expected perceptual properties everywhere, obscuring the critical evidence of where the illusion and perception emerge. The second part of this review then highlights the roadblocks to research raised by attention and describes current solutions for accessing what illusions can offer.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":" ","pages":"1-22"},"PeriodicalIF":5.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141318659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Shape Perception Works, in Two Dimensions and Three Dimensions. 形状感知是如何工作的》,载《二维与三维》。
IF 5 2区 医学
Annual Review of Vision Science Pub Date : 2024-09-01 Epub Date: 2024-09-02 DOI: 10.1146/annurev-vision-112823-031607
Kristina J Nielsen, Charles E Connor
{"title":"How Shape Perception Works, in Two Dimensions and Three Dimensions.","authors":"Kristina J Nielsen, Charles E Connor","doi":"10.1146/annurev-vision-112823-031607","DOIUrl":"10.1146/annurev-vision-112823-031607","url":null,"abstract":"<p><p>The ventral visual pathway transforms retinal images into neural representations that support object understanding, including exquisite appreciation of precise 2D pattern shape and 3D volumetric shape. We articulate a framework for understanding the goals of this transformation and how they are achieved by neural coding at successive ventral pathway stages. The critical goals are (<i>a</i>) radical compression to make shape information communicable across axonal bundles and storable in memory, (<i>b</i>) explicit coding to make shape information easily readable by the rest of the brain and thus accessible for cognition and behavioral control, and (<i>c</i>) representational stability to maintain consistent perception across highly variable viewing conditions. We describe how each transformational step in ventral pathway vision serves one or more of these goals. This three-goal framework unifies discoveries about ventral shape processing into a neural explanation for our remarkable experience of shape as a vivid, richly detailed aspect of the natural world.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":" ","pages":"47-68"},"PeriodicalIF":5.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141288795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights Into Myopia from Mouse Models 小鼠模型对近视的启示
IF 6 2区 医学
Annual Review of Vision Science Pub Date : 2024-04-18 DOI: 10.1146/annurev-vision-102122-102059
Reece Mazade, Teele Palumaa, Machelle T. Pardue
{"title":"Insights Into Myopia from Mouse Models","authors":"Reece Mazade, Teele Palumaa, Machelle T. Pardue","doi":"10.1146/annurev-vision-102122-102059","DOIUrl":"https://doi.org/10.1146/annurev-vision-102122-102059","url":null,"abstract":"Animal models are critical for understanding the initiation and progression of myopia, a refractive condition that causes blurred distance vision. The prevalence of myopia is rapidly increasing worldwide, and myopia increases the risk of developing potentially blinding diseases. Current pharmacological, optical, and environmental interventions attenuate myopia progression in children, but it is still unclear how this occurs or how these interventions can be improved to increase their protective effects. To optimize myopia interventions, directed mechanistic studies are needed. The mouse model is well-suited to these studies because of its well-characterized visual system and the genetic experimental tools available, which can be combined with pharmacological and environmental manipulations for powerful investigations of causation. This review describes aspects of the mouse visual system that support its use as a myopia model and presents genetic, pharmacological, and environmental studies that significantly contribute to our understanding of the mechanisms that underlie myopigenesis.","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"25 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140627171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of Adaptive Optics Imaging for Studying Conditions Affecting the Fovea 自适应光学成像在研究影响眼窝条件方面的应用
IF 6 2区 医学
Annual Review of Vision Science Pub Date : 2024-04-18 DOI: 10.1146/annurev-vision-102122-100022
Joseph Kreis, Joseph Carroll
{"title":"Applications of Adaptive Optics Imaging for Studying Conditions Affecting the Fovea","authors":"Joseph Kreis, Joseph Carroll","doi":"10.1146/annurev-vision-102122-100022","DOIUrl":"https://doi.org/10.1146/annurev-vision-102122-100022","url":null,"abstract":"The fovea is a highly specialized region of the central retina, defined by an absence of inner retinal layers and the accompanying vasculature, an increased density of cone photoreceptors, a near absence of rod photoreceptors, and unique private-line photoreceptor to midget ganglion cell circuitry. These anatomical specializations support high-acuity vision in humans. While direct study of foveal shape and size is routinely performed using optical coherence tomography, examination of the other anatomical specializations of the fovea has only recently become possible using an array of adaptive optics (AO)-based imaging tools. These devices correct for the eye's monochromatic aberrations and permit cellular-resolution imaging of the living retina. In this article, we review the application of AO-based imaging techniques to conditions affecting the fovea, with an emphasis on how imaging has advanced our understanding of pathophysiology.","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"85 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140627301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Presynaptic Proteins and Their Roles in Visual Processing by the Retina 突触前蛋白及其在视网膜视觉处理中的作用
IF 6 2区 医学
Annual Review of Vision Science Pub Date : 2024-04-15 DOI: 10.1146/annurev-vision-101322-111204
Wallace B. Thoreson, David Zenisek
{"title":"Presynaptic Proteins and Their Roles in Visual Processing by the Retina","authors":"Wallace B. Thoreson, David Zenisek","doi":"10.1146/annurev-vision-101322-111204","DOIUrl":"https://doi.org/10.1146/annurev-vision-101322-111204","url":null,"abstract":"The sense of vision begins in the retina, where light is detected and processed through a complex series of synaptic connections into meaningful information relayed to the brain via retinal ganglion cells. Light responses begin as tonic and graded signals in photoreceptors, later emerging from the retina as a series of spikes from ganglion cells. Processing by the retina extracts critical features of the visual world, including spatial frequency, temporal frequency, motion direction, color, contrast, and luminance. To achieve this, the retina has evolved specialized and unique synapse types. These include the ribbon synapses of photoreceptors and bipolar cells, the dendritic synapses of amacrine and horizontal cells, and unconventional synaptic feedback from horizontal cells to photoreceptors. We review these unique synapses in the retina with a focus on the presynaptic molecules and physiological properties that shape their capabilities.","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"11 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visual Representations: Insights from Neural Decoding. 视觉表现:来自神经解码的见解。
IF 6 2区 医学
Annual Review of Vision Science Pub Date : 2023-09-15 Epub Date: 2023-03-08 DOI: 10.1146/annurev-vision-100120-025301
Amanda K Robinson, Genevieve L Quek, Thomas A Carlson
{"title":"Visual Representations: Insights from Neural Decoding.","authors":"Amanda K Robinson,&nbsp;Genevieve L Quek,&nbsp;Thomas A Carlson","doi":"10.1146/annurev-vision-100120-025301","DOIUrl":"10.1146/annurev-vision-100120-025301","url":null,"abstract":"<p><p>Patterns of brain activity contain meaningful information about the perceived world. Recent decades have welcomed a new era in neural analyses, with computational techniques from machine learning applied to neural data to decode information represented in the brain. In this article, we review how decoding approaches have advanced our understanding of visual representations and discuss efforts to characterize both the complexity and the behavioral relevance of these representations. We outline the current consensus regarding the spatiotemporal structure of visual representations and review recent findings that suggest that visual representations are at once robust to perturbations, yet sensitive to different mental states. Beyond representations of the physical world, recent decoding work has shone a light on how the brain instantiates internally generated states, for example, during imagery and prediction. Going forward, decoding has remarkable potential to assess the functional relevance of visual representations for human behavior, reveal how representations change across development and during aging, and uncover their presentation in various mental disorders.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"9 ","pages":"313-335"},"PeriodicalIF":6.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10277430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Using Natural Scenes to Enhance our Understanding of the Cerebral Cortex's Role in Visual Search. 利用自然场景增强我们对大脑皮层在视觉搜索中的作用的理解。
IF 6 2区 医学
Annual Review of Vision Science Pub Date : 2023-09-15 Epub Date: 2023-05-10 DOI: 10.1146/annurev-vision-100720-124033
Mark A Segraves
{"title":"Using Natural Scenes to Enhance our Understanding of the Cerebral Cortex's Role in Visual Search.","authors":"Mark A Segraves","doi":"10.1146/annurev-vision-100720-124033","DOIUrl":"10.1146/annurev-vision-100720-124033","url":null,"abstract":"<p><p>Using natural scenes is an approach to studying the visual and eye movement systems approximating how these systems function in everyday life. This review examines the results from behavioral and neurophysiological studies using natural scene viewing in humans and monkeys. The use of natural scenes for the study of cerebral cortical activity is relatively new and presents challenges for data analysis. Methods and results from the use of natural scenes for the study of the visual and eye movement cortex are presented, with emphasis on new insights that this method provides enhancing what is known about these cortical regions from the use of conventional methods.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"9 ","pages":"435-454"},"PeriodicalIF":6.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10278455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Are Deep Neural Networks Adequate Behavioral Models of Human Visual Perception? 深度神经网络是否适合人类视觉感知的行为模型?
IF 6 2区 医学
Annual Review of Vision Science Pub Date : 2023-09-15 Epub Date: 2023-03-31 DOI: 10.1146/annurev-vision-120522-031739
Felix A Wichmann, Robert Geirhos
{"title":"Are Deep Neural Networks Adequate Behavioral Models of Human Visual Perception?","authors":"Felix A Wichmann,&nbsp;Robert Geirhos","doi":"10.1146/annurev-vision-120522-031739","DOIUrl":"10.1146/annurev-vision-120522-031739","url":null,"abstract":"<p><p>Deep neural networks (DNNs) are machine learning algorithms that have revolutionized computer vision due to their remarkable successes in tasks like object classification and segmentation. The success of DNNs as computer vision algorithms has led to the suggestion that DNNs may also be good models of human visual perception. In this article, we review evidence regarding current DNNs as adequate behavioral models of human core object recognition. To this end, we argue that it is important to distinguish between statistical tools and computational models and to understand model quality as a multidimensional concept in which clarity about modeling goals is key. Reviewing a large number of psychophysical and computational explorations of core object recognition performance in humans and DNNs, we argue that DNNs are highly valuable scientific tools but that, as of today, DNNs should only be regarded as promising-but not yet adequate-computational models of human core object recognition behavior. On the way, we dispel several myths surrounding DNNs in vision science.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"9 ","pages":"501-524"},"PeriodicalIF":6.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10278871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Suppressing Retinal Remodeling to Mitigate Vision Loss in Photoreceptor Degenerative Disorders. 抑制视网膜重塑以减轻光受体退行性疾病的视力损失。
IF 6 2区 医学
Annual Review of Vision Science Pub Date : 2023-09-15 DOI: 10.1146/annurev-vision-112122-020957
Richard H Kramer
{"title":"Suppressing Retinal Remodeling to Mitigate Vision Loss in Photoreceptor Degenerative Disorders.","authors":"Richard H Kramer","doi":"10.1146/annurev-vision-112122-020957","DOIUrl":"10.1146/annurev-vision-112122-020957","url":null,"abstract":"<p><p>Rod and cone photoreceptors degenerate in retinitis pigmentosa and age-related macular degeneration, robbing the visual system of light-triggered signals necessary for sight. However, changes in the retina do not stop with the photoreceptors. A stereotypical set of morphological and physiological changes, known as remodeling, occur in downstream retinal neurons. Some aspects of remodeling are homeostatic, with structural or functional changes compensating for partial loss of visual inputs. However, other aspects are nonhomeostatic, corrupting retinal information processing to obscure vision mediated naturally by surviving photoreceptors or artificially by vision-restoration technologies. In this review, I consider the mechanism of remodeling and its consequences for residual and restored visual function; discuss the role of retinoic acid, a critical molecular trigger of detrimental remodeling; and discuss strategies for suppressing retinoic acid biosynthesis or signaling as therapeutic possibilities for mitigating vision loss.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"9 ","pages":"131-153"},"PeriodicalIF":6.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10633048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Disparities in Eye Care Access and Utilization: A Narrative Review. 眼部护理获取和利用的差异:叙述性综述。
IF 6 2区 医学
Annual Review of Vision Science Pub Date : 2023-09-15 Epub Date: 2023-05-30 DOI: 10.1146/annurev-vision-112122-020934
Joana E Andoh, Agnes C Ezekwesili, Kristen Nwanyanwu, Angela Elam
{"title":"Disparities in Eye Care Access and Utilization: A Narrative Review.","authors":"Joana E Andoh,&nbsp;Agnes C Ezekwesili,&nbsp;Kristen Nwanyanwu,&nbsp;Angela Elam","doi":"10.1146/annurev-vision-112122-020934","DOIUrl":"10.1146/annurev-vision-112122-020934","url":null,"abstract":"<p><p>This narrative review summarizes the literature on factors related to eye care access and utilization in the United States. Using the Healthy People 2030 framework, this review investigates social determinants of health associated with general and follow-up engagement, screenings, diagnostic visits, treatment, technology, and teleophthalmology. We provide hypotheses for these documented eye care disparities, featuring qualitative, patient-centered research. Lastly, we provide recommendations in the hopes of appropriately eliminating these disparities and reimagining eye care.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"9 ","pages":"15-37"},"PeriodicalIF":6.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10282092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信