Annual Review of Vision Science最新文献

筛选
英文 中文
Visual Dysfunction in Diabetes. 糖尿病患者的视觉功能障碍。
IF 5 2区 医学
Annual Review of Vision Science Pub Date : 2023-09-15 Epub Date: 2023-05-10 DOI: 10.1146/annurev-vision-111022-123810
Erika D Eggers
{"title":"Visual Dysfunction in Diabetes.","authors":"Erika D Eggers","doi":"10.1146/annurev-vision-111022-123810","DOIUrl":"10.1146/annurev-vision-111022-123810","url":null,"abstract":"<p><p>Although diabetic retinopathy (DR) is clinically diagnosed as a vascular disease, many studies find retinal neuronal and visual dysfunction before the onset of vascular DR. This suggests that DR should be viewed as a neurovascular disease. Prior to the onset of DR, human patients have compromised electroretinograms that indicate a disruption of normal function, particularly in the inner retina. They also exhibit reduced contrast sensitivity. These early changes, especially those due to dysfunction in the inner retina, are also seen in rodent models of diabetes in the early stages of the disease. Rodent models of diabetes exhibit several neuronal mechanisms, such as reduced evoked GABA release, increased excitatory glutamate signaling, and reduced dopamine signaling, that suggest specific neuronal deficits. This suggests that understanding neuronal deficits may lead to early diabetes treatments to ameliorate neuronal dysfunction.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"9 ","pages":"91-109"},"PeriodicalIF":5.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262130/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10278452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Apps as Assistive Devices for Visually Impaired Persons. 应用程序作为视障人士辅助设备的影响。
IF 6 2区 医学
Annual Review of Vision Science Pub Date : 2023-09-15 Epub Date: 2023-04-26 DOI: 10.1146/annurev-vision-111022-123837
Shrinivas Pundlik, Prerana Shivshanker, Gang Luo
{"title":"Impact of Apps as Assistive Devices for Visually Impaired Persons.","authors":"Shrinivas Pundlik,&nbsp;Prerana Shivshanker,&nbsp;Gang Luo","doi":"10.1146/annurev-vision-111022-123837","DOIUrl":"10.1146/annurev-vision-111022-123837","url":null,"abstract":"<p><p>The pervasiveness of mobile devices and other associated technologies has affected all aspects of our daily lives. People with visual impairments are no exception, as they increasingly tend to rely on mobile apps for assistance with various visual tasks in daily life. Compared to dedicated visual aids, mobile apps offer advantages such as affordability, versatility, portability, and ubiquity. We have surveyed hundreds of mobile apps of potential interest to people with vision impairments, either released as special assistive apps claiming to help in tasks such as text or object recognition (<i>n</i> = 68), digital accessibility (<i>n</i> = 84), navigation (<i>n</i> = 44), and remote sighted service (<i>n</i> = 4), among others, or marketed as general camera magnification apps that can be used for visual assistance (<i>n</i> = 77). While assistive apps as a whole received positive feedback from visually impaired users, as reported in various studies, evaluations of the usability of every app were typically limited to user reviews, which are often not scientifically informative. Rigorous evaluation studies on the effect of vision assistance apps on daily task performance and quality of life are relatively rare. Moreover, evaluation criteria are difficult to establish, given the heterogeneity of the visual tasks and visual needs of the users. In addition to surveying literature on vision assistance apps, this review discusses the feasibility and necessity of conducting scientific research to understand visual needs and methods to evaluate real-world benefits.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"9 ","pages":"111-130"},"PeriodicalIF":6.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10278440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Ultra-High Field Imaging of Human Visual Cognition. 人类视觉认知的超高场成像。
IF 6 2区 医学
Annual Review of Vision Science Pub Date : 2023-09-15 Epub Date: 2023-05-03 DOI: 10.1146/annurev-vision-111022-123830
Ke Jia, Rainer Goebel, Zoe Kourtzi
{"title":"Ultra-High Field Imaging of Human Visual Cognition.","authors":"Ke Jia,&nbsp;Rainer Goebel,&nbsp;Zoe Kourtzi","doi":"10.1146/annurev-vision-111022-123830","DOIUrl":"10.1146/annurev-vision-111022-123830","url":null,"abstract":"<p><p>Functional magnetic resonance imaging (fMRI), the key methodology for mapping the functions of the human brain in a noninvasive manner, is limited by low temporal and spatial resolution. Recent advances in ultra-high field (UHF) fMRI provide a mesoscopic (i.e., submillimeter resolution) tool that allows us to probe laminar and columnar circuits, distinguish bottom-up versus top-down pathways, and map small subcortical areas. We review recent work demonstrating that UHF fMRI provides a robust methodology for imaging the brain across cortical depths and columns that provides insights into the brain's organization and functions at unprecedented spatial resolution, advancing our understanding of the fine-scale computations and interareal communication that support visual cognition.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"9 ","pages":"479-500"},"PeriodicalIF":6.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10331108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Structure, Function, and Molecular Landscapes of the Aging Retina. 衰老视网膜的结构、功能和分子景观。
IF 6 2区 医学
Annual Review of Vision Science Pub Date : 2023-09-15 Epub Date: 2023-05-17 DOI: 10.1146/annurev-vision-112122-020950
Jeffrey D Zhu, Sharma Pooja Tarachand, Qudrat Abdulwahab, Melanie A Samuel
{"title":"Structure, Function, and Molecular Landscapes of the Aging Retina.","authors":"Jeffrey D Zhu, Sharma Pooja Tarachand, Qudrat Abdulwahab, Melanie A Samuel","doi":"10.1146/annurev-vision-112122-020950","DOIUrl":"10.1146/annurev-vision-112122-020950","url":null,"abstract":"<p><p>Because the central nervous system is largely nonrenewing, neurons and their synapses must be maintained over the lifetime of an individual to ensure circuit function. Age is a dominant risk factor for neural diseases, and declines in nervous system function are a common feature of aging even in the absence of disease. These alterations extend to the visual system and, in particular, to the retina. The retina is a site of clinically relevant age-related alterations but has also proven to be a uniquely approachable system for discovering principles that govern neural aging because it is well mapped, contains diverse neuron types, and is experimentally accessible. In this article, we review the structural and molecular impacts of aging on neurons within the inner and outer retina circuits. We further discuss the contribution of non-neuronal cell types and systems to retinal aging outcomes. Understanding how and why the retina ages is critical to efforts aimed at preventing age-related neural decline and restoring neural function.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"9 ","pages":"177-199"},"PeriodicalIF":6.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10524587/pdf/nihms-1904323.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10626927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Predicting Visual Fixations. 预测视觉修复。
IF 6 2区 医学
Annual Review of Vision Science Pub Date : 2023-09-15 Epub Date: 2023-07-07 DOI: 10.1146/annurev-vision-120822-072528
Matthias Kümmerer, Matthias Bethge
{"title":"Predicting Visual Fixations.","authors":"Matthias Kümmerer,&nbsp;Matthias Bethge","doi":"10.1146/annurev-vision-120822-072528","DOIUrl":"10.1146/annurev-vision-120822-072528","url":null,"abstract":"<p><p>As we navigate and behave in the world, we are constantly deciding, a few times per second, where to look next. The outcomes of these decisions in response to visual input are comparatively easy to measure as trajectories of eye movements, offering insight into many unconscious and conscious visual and cognitive processes. In this article, we review recent advances in predicting where we look. We focus on evaluating and comparing models: How can we consistently measure how well models predict eye movements, and how can we judge the contribution of different mechanisms? Probabilistic models facilitate a unified approach to fixation prediction that allows us to use explainable information explained to compare different models across different settings, such as static and video saliency, as well as scanpath prediction. We review how the large variety of saliency maps and scanpath models can be translated into this unifying framework, how much different factors contribute, and how we can select the most informative examples for model comparison. We conclude that the universal scale of information gain offers a powerful tool for the inspection of candidate mechanisms and experimental design that helps us understand the continual decision-making process that determines where we look.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"9 ","pages":"269-291"},"PeriodicalIF":6.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10628457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Perceptual Science of Augmented Reality. 增强现实的感知科学。
IF 6 2区 医学
Annual Review of Vision Science Pub Date : 2023-09-15 Epub Date: 2023-03-21 DOI: 10.1146/annurev-vision-111022-123758
Emily A Cooper
{"title":"The Perceptual Science of Augmented Reality.","authors":"Emily A Cooper","doi":"10.1146/annurev-vision-111022-123758","DOIUrl":"10.1146/annurev-vision-111022-123758","url":null,"abstract":"<p><p>Augmented reality (AR) systems aim to alter our view of the world and enable us to see things that are not actually there. The resulting discrepancy between perception and reality can create compelling entertainment and can support innovative approaches to education, guidance, and assistive tools. However, building an AR system that effectively integrates with our natural visual experience is hard. AR systems often suffer from visual limitations and artifacts, and addressing these flaws requires basic knowledge of perception. At the same time, AR system development can serve as a catalyst that drives innovative new research in perceptual science. This review describes recent perceptual research pertinent to and driven by modern AR systems, with the goal of highlighting thought-provoking areas of inquiry and open questions.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"9 ","pages":"455-478"},"PeriodicalIF":6.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10643901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Emerging Pathogenic Viral Infections of the Eye. 新出现的眼部致病性病毒感染。
IF 6 2区 医学
Annual Review of Vision Science Pub Date : 2023-09-15 Epub Date: 2023-04-05 DOI: 10.1146/annurev-vision-100820-010504
Ekta Rishi, Joanne Thomas, Tolulope Fashina, Lucas Kim, Steven Yeh
{"title":"Emerging Pathogenic Viral Infections of the Eye.","authors":"Ekta Rishi,&nbsp;Joanne Thomas,&nbsp;Tolulope Fashina,&nbsp;Lucas Kim,&nbsp;Steven Yeh","doi":"10.1146/annurev-vision-100820-010504","DOIUrl":"10.1146/annurev-vision-100820-010504","url":null,"abstract":"<p><p>Global health security threats and the public health impact resulting from emerging infectious diseases including the ongoing COVID-19 pandemic and recent Ebola virus disease outbreaks continuously emphasize the need for a comprehensive approach to preparedness, management of disease outbreaks, and health sequelae associated with emergent pathogens. A spectrum of associated ophthalmic manifestations, along with the potential persistence of emerging viral pathogens in ocular tissues, highlight the importance of an ophthalmic approach to contributing to efforts in the response to public health emergencies from disease outbreaks. This article summarizes the ophthalmic and systemic findings, epidemiology, and therapeutics for emerging viral pathogens identified by the World Health Organization as high-priority pathogens with epidemic potential.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"9 ","pages":"71-89"},"PeriodicalIF":6.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10271250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Pathophysiology of Retinopathy of Prematurity. 早产视网膜病变的病理生理学。
IF 6 2区 医学
Annual Review of Vision Science Pub Date : 2023-09-15 Epub Date: 2023-05-10 DOI: 10.1146/annurev-vision-093022-021420
M Elizabeth Hartnett
{"title":"Pathophysiology of Retinopathy of Prematurity.","authors":"M Elizabeth Hartnett","doi":"10.1146/annurev-vision-093022-021420","DOIUrl":"10.1146/annurev-vision-093022-021420","url":null,"abstract":"<p><p>Retinopathy of prematurity (ROP) is a complex disease involving development of the neural retina, ocular circulations, and other organ systems of the premature infant. The external stresses of the ex utero environment also influence the pathophysiology of ROP through interactions among retinal neural, vascular, and glial cells. There is variability among individual infants and presentations of the disease throughout the world, making ROP challenging to study. The methods used include representative animal models, cell culture, and clinical studies. This article describes the impact of maternal-fetal interactions; stresses that the preterm infant experiences; and biologic pathways of interest, including growth factor effects and cell-cell interactions, on the complex pathophysiology of ROP phenotypes in developed and emerging countries.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"9 ","pages":"39-70"},"PeriodicalIF":6.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10278456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Expanding Role for Nonvisual Opsins in Extraocular Light Sensing Physiology. 非视觉Opsins在眼外光感测生理学中的扩展作用。
IF 6 2区 医学
Annual Review of Vision Science Pub Date : 2023-09-15 Epub Date: 2023-05-17 DOI: 10.1146/annurev-vision-100820-094018
Mutahar Andrabi, Brian Upton, Richard A Lang, Shruti Vemaraju
{"title":"An Expanding Role for Nonvisual Opsins in Extraocular Light Sensing Physiology.","authors":"Mutahar Andrabi,&nbsp;Brian Upton,&nbsp;Richard A Lang,&nbsp;Shruti Vemaraju","doi":"10.1146/annurev-vision-100820-094018","DOIUrl":"10.1146/annurev-vision-100820-094018","url":null,"abstract":"<p><p>We live on a planet that is bathed in daily and seasonal sunlight cycles. In this context, terrestrial life forms have evolved mechanisms that directly harness light energy (plants) or decode light information for adaptive advantage. In animals, the main light sensors are a family of G protein-coupled receptors called opsins. Opsin function is best described for the visual sense. However, most animals also use opsins for extraocular light sensing for seasonal behavior and camouflage. While it has long been believed that mammals do not have an extraocular light sensing capacity, recent evidence suggests otherwise. Notably, encephalopsin (OPN3) and neuropsin (OPN5) are both known to mediate extraocular light sensing in mice. Examples of this mediation include photoentrainment of circadian clocks in skin (by OPN5) and acute light-dependent regulation of metabolic pathways (by OPN3 and OPN5). This review summarizes current findings in the expanding field of extraocular photoreception and their relevance for human physiology.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"9 ","pages":"245-267"},"PeriodicalIF":6.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10626924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Contributions of the Basal Ganglia to Visual Perceptual Decisions. 基底神经节对视觉感知决策的贡献。
IF 5 2区 医学
Annual Review of Vision Science Pub Date : 2023-09-15 DOI: 10.1146/annurev-vision-111022-123804
Long Ding
{"title":"Contributions of the Basal Ganglia to Visual Perceptual Decisions.","authors":"Long Ding","doi":"10.1146/annurev-vision-111022-123804","DOIUrl":"10.1146/annurev-vision-111022-123804","url":null,"abstract":"<p><p>The basal ganglia (BG) make up a prominent nexus between visual and motor-related brain regions. In contrast to the BG's well-established roles in movement control and value-based decision making, their contributions to the transformation of visual input into an action remain unclear, especially in the context of perceptual decisions based on uncertain visual evidence. This article reviews recent progress in our understanding of the BG's contributions to the formation, evaluation, and adjustment of such decisions. From theoretical and experimental perspectives, the review focuses on four key stations in the BG network, namely, the striatum, pallidum, subthalamic nucleus, and midbrain dopamine neurons, which can have different roles and together support the decision process.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"9 ","pages":"385-407"},"PeriodicalIF":5.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10633044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信