{"title":"抑制视网膜重塑以减轻光受体退行性疾病的视力损失。","authors":"Richard H Kramer","doi":"10.1146/annurev-vision-112122-020957","DOIUrl":null,"url":null,"abstract":"<p><p>Rod and cone photoreceptors degenerate in retinitis pigmentosa and age-related macular degeneration, robbing the visual system of light-triggered signals necessary for sight. However, changes in the retina do not stop with the photoreceptors. A stereotypical set of morphological and physiological changes, known as remodeling, occur in downstream retinal neurons. Some aspects of remodeling are homeostatic, with structural or functional changes compensating for partial loss of visual inputs. However, other aspects are nonhomeostatic, corrupting retinal information processing to obscure vision mediated naturally by surviving photoreceptors or artificially by vision-restoration technologies. In this review, I consider the mechanism of remodeling and its consequences for residual and restored visual function; discuss the role of retinoic acid, a critical molecular trigger of detrimental remodeling; and discuss strategies for suppressing retinoic acid biosynthesis or signaling as therapeutic possibilities for mitigating vision loss.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"9 ","pages":"131-153"},"PeriodicalIF":5.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Suppressing Retinal Remodeling to Mitigate Vision Loss in Photoreceptor Degenerative Disorders.\",\"authors\":\"Richard H Kramer\",\"doi\":\"10.1146/annurev-vision-112122-020957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rod and cone photoreceptors degenerate in retinitis pigmentosa and age-related macular degeneration, robbing the visual system of light-triggered signals necessary for sight. However, changes in the retina do not stop with the photoreceptors. A stereotypical set of morphological and physiological changes, known as remodeling, occur in downstream retinal neurons. Some aspects of remodeling are homeostatic, with structural or functional changes compensating for partial loss of visual inputs. However, other aspects are nonhomeostatic, corrupting retinal information processing to obscure vision mediated naturally by surviving photoreceptors or artificially by vision-restoration technologies. In this review, I consider the mechanism of remodeling and its consequences for residual and restored visual function; discuss the role of retinoic acid, a critical molecular trigger of detrimental remodeling; and discuss strategies for suppressing retinoic acid biosynthesis or signaling as therapeutic possibilities for mitigating vision loss.</p>\",\"PeriodicalId\":48658,\"journal\":{\"name\":\"Annual Review of Vision Science\",\"volume\":\"9 \",\"pages\":\"131-153\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Vision Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-vision-112122-020957\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Vision Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-vision-112122-020957","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Suppressing Retinal Remodeling to Mitigate Vision Loss in Photoreceptor Degenerative Disorders.
Rod and cone photoreceptors degenerate in retinitis pigmentosa and age-related macular degeneration, robbing the visual system of light-triggered signals necessary for sight. However, changes in the retina do not stop with the photoreceptors. A stereotypical set of morphological and physiological changes, known as remodeling, occur in downstream retinal neurons. Some aspects of remodeling are homeostatic, with structural or functional changes compensating for partial loss of visual inputs. However, other aspects are nonhomeostatic, corrupting retinal information processing to obscure vision mediated naturally by surviving photoreceptors or artificially by vision-restoration technologies. In this review, I consider the mechanism of remodeling and its consequences for residual and restored visual function; discuss the role of retinoic acid, a critical molecular trigger of detrimental remodeling; and discuss strategies for suppressing retinoic acid biosynthesis or signaling as therapeutic possibilities for mitigating vision loss.
期刊介绍:
The Annual Review of Vision Science reviews progress in the visual sciences, a cross-cutting set of disciplines which intersect psychology, neuroscience, computer science, cell biology and genetics, and clinical medicine. The journal covers a broad range of topics and techniques, including optics, retina, central visual processing, visual perception, eye movements, visual development, vision models, computer vision, and the mechanisms of visual disease, dysfunction, and sight restoration. The study of vision is central to progress in many areas of science, and this new journal will explore and expose the connections that link it to biology, behavior, computation, engineering, and medicine.