小鼠模型对近视的启示

IF 5 2区 医学 Q1 NEUROSCIENCES
Reece Mazade, Teele Palumaa, Machelle T. Pardue
{"title":"小鼠模型对近视的启示","authors":"Reece Mazade, Teele Palumaa, Machelle T. Pardue","doi":"10.1146/annurev-vision-102122-102059","DOIUrl":null,"url":null,"abstract":"Animal models are critical for understanding the initiation and progression of myopia, a refractive condition that causes blurred distance vision. The prevalence of myopia is rapidly increasing worldwide, and myopia increases the risk of developing potentially blinding diseases. Current pharmacological, optical, and environmental interventions attenuate myopia progression in children, but it is still unclear how this occurs or how these interventions can be improved to increase their protective effects. To optimize myopia interventions, directed mechanistic studies are needed. The mouse model is well-suited to these studies because of its well-characterized visual system and the genetic experimental tools available, which can be combined with pharmacological and environmental manipulations for powerful investigations of causation. This review describes aspects of the mouse visual system that support its use as a myopia model and presents genetic, pharmacological, and environmental studies that significantly contribute to our understanding of the mechanisms that underlie myopigenesis.","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"25 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights Into Myopia from Mouse Models\",\"authors\":\"Reece Mazade, Teele Palumaa, Machelle T. Pardue\",\"doi\":\"10.1146/annurev-vision-102122-102059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Animal models are critical for understanding the initiation and progression of myopia, a refractive condition that causes blurred distance vision. The prevalence of myopia is rapidly increasing worldwide, and myopia increases the risk of developing potentially blinding diseases. Current pharmacological, optical, and environmental interventions attenuate myopia progression in children, but it is still unclear how this occurs or how these interventions can be improved to increase their protective effects. To optimize myopia interventions, directed mechanistic studies are needed. The mouse model is well-suited to these studies because of its well-characterized visual system and the genetic experimental tools available, which can be combined with pharmacological and environmental manipulations for powerful investigations of causation. This review describes aspects of the mouse visual system that support its use as a myopia model and presents genetic, pharmacological, and environmental studies that significantly contribute to our understanding of the mechanisms that underlie myopigenesis.\",\"PeriodicalId\":48658,\"journal\":{\"name\":\"Annual Review of Vision Science\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Vision Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-vision-102122-102059\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Vision Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-vision-102122-102059","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

近视是一种导致远距离视力模糊的屈光性疾病,动物模型对于了解近视的发生和发展至关重要。近视的发病率在全球范围内迅速上升,近视会增加患上潜在致盲疾病的风险。目前的药物、光学和环境干预措施可减轻儿童近视的发展,但仍不清楚这是如何发生的,也不清楚如何改进这些干预措施以提高其保护效果。为了优化近视干预措施,需要进行定向机理研究。小鼠模型非常适合于这些研究,因为它的视觉系统特性良好,而且遗传实验工具可用,可以与药物和环境操作相结合,对因果关系进行有力的研究。本综述介绍了小鼠视觉系统中支持将其用作近视模型的各个方面,并介绍了基因、药理学和环境研究,这些研究极大地促进了我们对近视发生机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insights Into Myopia from Mouse Models
Animal models are critical for understanding the initiation and progression of myopia, a refractive condition that causes blurred distance vision. The prevalence of myopia is rapidly increasing worldwide, and myopia increases the risk of developing potentially blinding diseases. Current pharmacological, optical, and environmental interventions attenuate myopia progression in children, but it is still unclear how this occurs or how these interventions can be improved to increase their protective effects. To optimize myopia interventions, directed mechanistic studies are needed. The mouse model is well-suited to these studies because of its well-characterized visual system and the genetic experimental tools available, which can be combined with pharmacological and environmental manipulations for powerful investigations of causation. This review describes aspects of the mouse visual system that support its use as a myopia model and presents genetic, pharmacological, and environmental studies that significantly contribute to our understanding of the mechanisms that underlie myopigenesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Vision Science
Annual Review of Vision Science Medicine-Ophthalmology
CiteScore
11.10
自引率
1.70%
发文量
19
期刊介绍: The Annual Review of Vision Science reviews progress in the visual sciences, a cross-cutting set of disciplines which intersect psychology, neuroscience, computer science, cell biology and genetics, and clinical medicine. The journal covers a broad range of topics and techniques, including optics, retina, central visual processing, visual perception, eye movements, visual development, vision models, computer vision, and the mechanisms of visual disease, dysfunction, and sight restoration. The study of vision is central to progress in many areas of science, and this new journal will explore and expose the connections that link it to biology, behavior, computation, engineering, and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信