High VoltagePub Date : 2025-02-24DOI: 10.1049/hve2.70005
Yushuang He, Feipeng Wang, Guoqiang Du, Lei Pan, Jian Li, Hongming Yang, Xiao Zhang, Zhicheng Zhang, Kaizheng Wang
{"title":"Unveiling first self-healing in metallised film capacitor: A macro–micro analysis","authors":"Yushuang He, Feipeng Wang, Guoqiang Du, Lei Pan, Jian Li, Hongming Yang, Xiao Zhang, Zhicheng Zhang, Kaizheng Wang","doi":"10.1049/hve2.70005","DOIUrl":"https://doi.org/10.1049/hve2.70005","url":null,"abstract":"<p>Metallised film capacitors (MFCs) are renowned for their unique self-healing (SH) properties, which bestow them with exceptional reliability and stability in the face of intense electric fields, high voltages, and pulse power applications. Nonetheless, the exploration of SH characteristics concerning single-layer dielectric film remains insufficient for advancing MFC reliability evaluation. To establish the theoretical correlation of SH characteristics from the device to the film in the MFCs, this work developed a simulation model to analyse the SH dynamic behaviour in the MFCs. The effects of coupling capacitors, arc resistance and insulation resistance on the macroscopic characteristics (voltage drop and pulse current) are focused during the SH process in MFCs. The results indicate that SH is primarily associated with the voltage drop duration rather than the sampling current. Consequently, the SH process in MFC is characterised as an abrupt decrease in voltage to its minimum value. This refinement enhances the SH energy dissipation model of MFC. The quantified relationship between the macroscopic characteristics and microstructure evolution (polypropylene decomposition and aluminium electrode vaporisation) is established in MFCs under diverse SH energy levels. As SH energy and duration increase, the proportion of energy attributed to polypropylene decomposition increases, resulting in multi-layer ablation and adhesion within the metallised film and a pronounced deterioration in MFC electrical performance. The examination of macro–micro perspectives sheds new light on the intricate mechanisms governing the SH behaviour in MFCs, offering valuable insights for the advancement of their design, reliability evaluation, and performance optimisation in diverse electrical applications.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 2","pages":"362-373"},"PeriodicalIF":4.4,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.70005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143892906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of gamma-ray irradiation on electrical conductivity of polypropylene composite for nuclear cable insulation","authors":"Baixin Liu, Yu Gao, Chenyi Guo, Jing Li, Yu Chen, Junguo Gao, Boxue Du","doi":"10.1049/hve2.70002","DOIUrl":"https://doi.org/10.1049/hve2.70002","url":null,"abstract":"<p>In this paper, the effect of gamma-ray irradiation on the electrical conductivity of polypropylene (PP) composites has been studied. The samples are prepared using PP and styrene–ethylene–butylene–styrene elastomer with contents ranging from 0 wt% to 50 wt%, and exposed to Cobalt-60 gamma irradiation, with a dose from 0 to 250 kGy. Electrical conductivities at different temperatures and trap distributions are measured to observe the deterioration of insulation performance. The microstructure of the sample is estimated using differential scanning calorimetry, X-ray diffraction, thermogravimetric analysis and a scanning electron microscope. The obtained results demonstrate a correlation between the increase in electrical conductivity and the elevation in both total dose and temperature. At 250 kGy, the trap distribution tends to become shallower, accompanied by a decrease in crystallinity, melting and decomposition temperatures of the sample. The PP composite exhibits better stability against irradiation and thermal effects, primarily due to the cross-linked structures formed by irradiation.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 2","pages":"470-479"},"PeriodicalIF":4.4,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.70002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143892902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High VoltagePub Date : 2025-02-14DOI: 10.1049/hve2.70004
Chongru Liu, Jun Liang, Zhanqing Yu
{"title":"Guest Editorial: Special issue on real-time simulation and validation of modular multilevel converter-based high-voltage direct current systems","authors":"Chongru Liu, Jun Liang, Zhanqing Yu","doi":"10.1049/hve2.70004","DOIUrl":"https://doi.org/10.1049/hve2.70004","url":null,"abstract":"<p>Modular multilevel converter-based high-voltage direct current (MMC-HVDC) technology is advancing rapidly in modern power systems, striving for higher voltage levels and greater power transmission capacity. Real-time simulation has become an essential tool for the design, analysis, and validation of MMC-HVDC systems. However, the complexity of MMC-HVDC with its numerous fast-switching power electronic components presents significant challenges in accurately capturing dynamic responses. Advanced simulation techniques are indispensable for modelling the intricate behaviours of converters, control systems, and protection mechanisms, which are critical for the reliable operation of MMC-HVDC systems.</p><p>We are honoured to have been invited by <i>High Voltage</i> to serve as guest editors for this special issue, which highlights key achievements in the field of real-time simulation and validation of MMC-HVDC systems. This issue comprises both invited and submitted papers. After rigorous peer review, four outstanding articles were selected showcasing cutting-edge research in real-time simulation technologies, advanced computational methods, and innovative platforms for emerging new power systems.</p><p>We extend our heartfelt gratitude to all contributing authors for their exceptional work and to the reviewers for their meticulous and insightful feedback, which have been instrumental in ensuring the quality of this special issue. We also sincerely thank the editorial team of <i>High Voltage</i> for their support and dedication throughout the preparation process.</p><p>We hope this special issue serves as an inspiring and educational resource, offering valuable insights and advancing the field of MMC-HVDC systems. Happy reading!</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 1","pages":"1-2"},"PeriodicalIF":4.4,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.70004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143536023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High VoltagePub Date : 2025-02-12DOI: 10.1049/hve2.70001
Yuan Chen, Jiadai Liu, Hui Ding, Yi Zhang
{"title":"Development of a field-programmable gate array-based real-time generic solver for power electronics circuits with arbitrary configurations","authors":"Yuan Chen, Jiadai Liu, Hui Ding, Yi Zhang","doi":"10.1049/hve2.70001","DOIUrl":"https://doi.org/10.1049/hve2.70001","url":null,"abstract":"<p>Using a field-programmable gate array (FPGA) as the core computational engine, this paper proposes a digital real-time electromagnetic transient simulator for a generic power electronic system. The <i>LC</i> switching model is employed for constant network conductance representation. The fully paralleled and pipelined design for network solutions and component computation accomplished the highest performance and efficiency on the FPGA. A customised 48-bit floating-point data format is proposed to achieve high simulation precision. This dedicated design is necessary for power electronic simulation. A typical power electronic transformer, which is a heavy computation burden for real-time simulation, demonstrates the effectiveness of the proposed simulator.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 1","pages":"47-55"},"PeriodicalIF":4.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.70001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143533998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High VoltagePub Date : 2025-02-12DOI: 10.1049/hve2.70003
Wen Wang, Xianglian Yan, Hao Wang, Keli Gao
{"title":"Comparative studies of C4F7N-based gas mixtures as the eco-friendly alternative to SF6 for interrupting applications","authors":"Wen Wang, Xianglian Yan, Hao Wang, Keli Gao","doi":"10.1049/hve2.70003","DOIUrl":"https://doi.org/10.1049/hve2.70003","url":null,"abstract":"<p>To comprehensively evaluate the feasibility of using C<sub>4</sub>F<sub>7</sub>N-based gas mixture as arc extinguishing medium, a comparative study is performed on the variations of the multi-physical fields, gas flow environment and decomposition characteristics of the gas mixtures. A modified theoretical basis of the arc model developed for the C<sub>4</sub>F<sub>7</sub>N-based gas mixture is presented in the work with particular emphasis on the non-recombination features of C<sub>4</sub>F<sub>7</sub>N. This work also experimentally studies the electrical characteristics of the gas medium and the monitored parameters are also used to calibrate the arc model. The amount change of the seven dominant decomposing by-products is analysed as well. The results present that the C<sub>4</sub>F<sub>7</sub>N/CO<sub>2</sub>/O<sub>2</sub> ternary gas mixture exhibits a more promising interrupting performance. Increasing the O<sub>2</sub> concentration from 5% to 10% has less effects on the arc characteristics, but it could suppress the formation of CO. The arc behaviour of C<sub>4</sub>F<sub>7</sub>N/CO<sub>2</sub>/O<sub>2</sub> gas mixture is also improved with increasing the velocity of the moving components. The findings provide important insights into the potential of C<sub>4</sub>F<sub>7</sub>N-based gas mixtures as one of the sustainable and effective solutions for high-voltage interrupting applications.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 1","pages":"228-242"},"PeriodicalIF":4.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.70003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143533999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rapid system prototype-based physical simulation platforms for power systems with high penetration of inverter-based resources","authors":"Wei Yao, Yimin Ruan, Yuying Chen, Hongyu Zhou, Jinyu Wen, Meng Zhou, Wenping Zuo","doi":"10.1049/hve2.12520","DOIUrl":"https://doi.org/10.1049/hve2.12520","url":null,"abstract":"<p>The traditional power system dominated by synchronous generators is gradually evolving into a power system with high penetration of inverter-based resources (IBRs). In this paper, the new characteristics that arise from the high penetration of IBRs in power systems are reviewed. In light of these characteristics, current simulation technologies are inadequate and new requirements for the simulation platforms have been proposed. In response, this paper introduces the rapid system prototype (RSP)-based physical simulation platforms, which include the digital simulator, the rapid prototype controller, and the rapid object-controlled prototype. RSP addresses the time-consuming and labour-intensive shortcomings of traditional simulation techniques and meets the rapid evolution needs of the power system with high penetration of IBRs. Compared with existing simulation platforms, RSP is a more suitable platform for the physical simulation of power systems with high penetration of IBRs. Using the modular multilevel converter-based high-voltage direct current as a case study, a novel physical simulation platform for power systems based on RSP is constructed. Experimental results demonstrate that the RSP concept and technology can establish an enterprise-level simulation environment and engineering practice platform. Moreover, it can provide realistic and flexible simulations of various characteristics of power systems with high penetration of IBRs.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 1","pages":"3-16"},"PeriodicalIF":4.4,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12520","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143533409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High VoltagePub Date : 2025-02-04DOI: 10.1049/hve2.12515
Mehmet Karataş, Yunus Biçen
{"title":"Nanoparticle-enhanced dielectric oils for improved electrical insulation: Comparison of MgO, Al2O3, and SiO2-based dielectric nanofluids","authors":"Mehmet Karataş, Yunus Biçen","doi":"10.1049/hve2.12515","DOIUrl":"https://doi.org/10.1049/hve2.12515","url":null,"abstract":"<p>This study provides comprehensive and quantitative assessments of the electrical insulation, viscosity, thermal conductivity, flash point, acidity, and stability of dielectric nanofluids. In the experiment, naphthenic mineral oil was chosen as the base fluid. MgO, Al<sub>2</sub>O<sub>3</sub>, and SiO<sub>2</sub> were preferred as nanoparticles. In the dielectric breakdown voltage (BDV) tests performed, increased values were observed at certain concentrations for each nanofluid, with the highest value in the SiO<sub>2</sub>-based nanofluid being 83.47 kV at a concentration rate of 0.05 g/L. Adding nanoparticles to the base oil increased the viscosity of all suspensions. Except for MgO-based dielectric nanofluid, the flash points of other nanofluids increased as compared to pure oil. Total acid number (TAN) values, on the other hand, increased for SiO<sub>2</sub>- and Al<sub>2</sub>O<sub>3</sub>-based nanofluids but decreased for MgO-based nanofluids. However, all values are quite below the standard limit of 0.25 mgKOH/g. The percentage transmittance values calculated from the ultraviolet and visible light (UV–vis) spectrophotometry results differed for each nanofluid. However, they were all lower than the base oil. In general, the results indicate that the use of dielectric nanofluids in electrical systems will be beneficial, provided that the problem of long-term stabilisation is solved.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 2","pages":"493-504"},"PeriodicalIF":4.4,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12515","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143892789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High VoltagePub Date : 2025-01-22DOI: 10.1049/hve2.12504
Chengcheng Zhang, Sen Wang, Hong Zhao, Minghua Chen, Xuan Wang, Xiaohong Chi
{"title":"Influence of maleic anhydride grafting on the positive temperature coefficient effect of semi-conductive composites and space charge injection to XLPE insulation","authors":"Chengcheng Zhang, Sen Wang, Hong Zhao, Minghua Chen, Xuan Wang, Xiaohong Chi","doi":"10.1049/hve2.12504","DOIUrl":"https://doi.org/10.1049/hve2.12504","url":null,"abstract":"<p>To suppress the resistivity positive temperature coefficient (PTC) effect of ethylene-butyl acrylate copolymer (EBA)-based semi-conductive shielding layer and the injection of charge carriers to insulation layer, the polar molecule maleic anhydride (MAH) is grafted onto EBA macromolecules by melt blending and thermal grafting. The resistivity temperature stability of the grafted semi-conductive composites, as well as the space charge distribution and direct current (DC) breakdown characteristics of cross-linked polyethylene (XLPE) insulation using the composites as the electrode is investigated. The results show that MAH grafting can significantly reduce the volume resistivity of semi-conductive composites, especially at a higher temperature, to suppress the PTC effect. And, the grafted semi-conductive composites can prevent the injection of charge carriers to XLPE insulation from the semi-conductive electrode to improve the space charge distribution and DC breakdown strength of XLPE insulation. The polar anhydride groups in the grafted MAH can enhance the interaction between EBA macromolecular chains and between EBA macromolecular chains and carbon black (CB) to improve the dispersion of CB in EBA matrix and the stability of the internal conductive network at the high temperature, improving the properties of EBA-based semi-conductive shielding layer and DC electrical properties of XLPE insulation layer.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 2","pages":"517-529"},"PeriodicalIF":4.4,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12504","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143892842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High VoltagePub Date : 2025-01-21DOI: 10.1049/hve2.12519
Hang Wang, Cheng Zhang, Zhuofei Wang, Shuai Zhang, Kaihang Guo, Tao Shao
{"title":"Electrohydraulic effect of microsecond pulsed discharge in transformer oils","authors":"Hang Wang, Cheng Zhang, Zhuofei Wang, Shuai Zhang, Kaihang Guo, Tao Shao","doi":"10.1049/hve2.12519","DOIUrl":"https://doi.org/10.1049/hve2.12519","url":null,"abstract":"<p>The physical process of microsecond pulsed discharge in transformer oil is the foundation for studying the initial mechanics of faults in ultra-high voltage transformers. However, the microsecond-scale electrohydraulic effect in transformer oil has not been investigated yet. In this paper, the shock wave and bubble generated by microsecond pulsed discharge in transformer oil between needle-needle electrodes are studied using a Schlieren system with a high-speed camera. The results show that the discharge channel in the 0.1 mm oil gap forms in 9.50 µs when the streamer and the first shock wave are observed. The bubble between electrodes expands in the subsequent 218.50 µs. Then, the bubble collapses when the second shock wave is observed. The velocities of the first and the second shock wave are 1388.16 and 1465.46 m/s, respectively. With the gap distance increase, all the breakdown voltage, the discharge energy, and the ratio of the mechanical energy to total energy increase, the breakdown current, the acceleration of the container wall, and the velocity of the shock wave decrease. It can be concluded that the first shock wave is generated by the streamer of microsecond pulsed discharge and the second shock wave is induced by the rapid density change due to the bubble collapsing.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 1","pages":"137-145"},"PeriodicalIF":4.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12519","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143536080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation of magnetic-oriented electronic packaging composite materials with improved thermal conductivity and insulating properties by filling magnetic BN@Fe3O4 core-shell particles into epoxy","authors":"Zeyu You, Ling Weng, Lizhu Guan, Xiaorui Zhang, Zijian Wu, Hao Chen, Wei Zhao","doi":"10.1049/hve2.12466","DOIUrl":"https://doi.org/10.1049/hve2.12466","url":null,"abstract":"<p>Epoxy resin (EP), as a resin material with excellent insulation performance, has been widely applied in fields such as electronics, coatings, ships etc. However, epoxy resins generally have poor thermal conductivity, which limits their application in the field of new generation of electronic packaging. To address the key issues mentioned above, the BN@Fe<sub>3</sub>O<sub>4</sub> particles with positive out-of-plane thermal conductivity were successfully prepared in this study, having a core-shell structure with rough surfaces as well. As a thermal conductive powder, the disadvantage of hexagonal boron nitride being easily agglomerated in resin has been improved. By applying an external magnetic field, three-dimensional thermal conduction pathways were constructed in the matrix. The physical and chemical properties of the BN@Fe<sub>3</sub>O<sub>4</sub> powder and its composite materials were analysed and tested. The experiment indicates that the thermal conductive magnetic powder BN@Fe<sub>3</sub>O<sub>4</sub> had been successfully prepared. When the filling amount of BN@Fe<sub>3</sub>O<sub>4</sub> reached 27.5 vol%, the out-of-plane thermal conductivity of the composite material was 1.758 W m<sup>−1</sup> K<sup>−1</sup>, which was 982.12% that of pure EP. At this point, the mechanical behaviour and insulation performance of EP composite materials can be effectively guaranteed at the same order of magnitude as pure EP performance.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 1","pages":"219-227"},"PeriodicalIF":4.4,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12466","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143536018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}