Distribution network planning considering active response of EVs and DTR of cables and transformers

IF 4.4 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
High Voltage Pub Date : 2025-04-30 DOI:10.1049/hve2.70024
Chen Pan, Weijiang Chen, Chengke Zhou, Wenjun Zhou
{"title":"Distribution network planning considering active response of EVs and DTR of cables and transformers","authors":"Chen Pan,&nbsp;Weijiang Chen,&nbsp;Chengke Zhou,&nbsp;Wenjun Zhou","doi":"10.1049/hve2.70024","DOIUrl":null,"url":null,"abstract":"<p>With increasing electricity demand and large-scale stochastic charging of electric vehicles (EVs), distribution networks face inevitable shortage of transfer capability, bringing new challenges to distribution network planning (DNP). Dynamic thermal rating (DTR), which evaluates the equipment rating based on actual meteorological conditions and equipment thermal state, can enhance the equipment transfer capability to meet the increasing load demand. In this paper, we propose a model considering the active response of EVs, and a bi-level DNP model incorporating the DTR of cables and transformers, in the upper level, the Prim algorithm is embedded into the particle swarm optimisation (PSO) algorithm to obtain an initial grid topology; in the lower level, types of cables and transformers as well as the installation of DTR equipment are determined, second-order cone (SOC) relaxation and linearisation of the variables product are then carried out to meet the non-linear constraints of cables and transformers, and the upper and lower models are solved in an iterative manner. Case studies demonstrate that the implementation of DTR effectively enhances the transfer capability of cables and transformers, saving 4.8% investment cost while ensuring 96% uplift of power supply. Besides, with 90% active response rate of EVs, total cost can be further reduced.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 2","pages":"279-293"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.70024","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.70024","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

With increasing electricity demand and large-scale stochastic charging of electric vehicles (EVs), distribution networks face inevitable shortage of transfer capability, bringing new challenges to distribution network planning (DNP). Dynamic thermal rating (DTR), which evaluates the equipment rating based on actual meteorological conditions and equipment thermal state, can enhance the equipment transfer capability to meet the increasing load demand. In this paper, we propose a model considering the active response of EVs, and a bi-level DNP model incorporating the DTR of cables and transformers, in the upper level, the Prim algorithm is embedded into the particle swarm optimisation (PSO) algorithm to obtain an initial grid topology; in the lower level, types of cables and transformers as well as the installation of DTR equipment are determined, second-order cone (SOC) relaxation and linearisation of the variables product are then carried out to meet the non-linear constraints of cables and transformers, and the upper and lower models are solved in an iterative manner. Case studies demonstrate that the implementation of DTR effectively enhances the transfer capability of cables and transformers, saving 4.8% investment cost while ensuring 96% uplift of power supply. Besides, with 90% active response rate of EVs, total cost can be further reduced.

Abstract Image

考虑电动汽车主动响应和电缆、变压器DTR的配电网规划
随着电力需求的不断增长和电动汽车的大规模随机充电,配电网不可避免地面临着输电能力不足的问题,这给配电网规划带来了新的挑战。动态热额定值(DTR)是根据实际气象条件和设备热状态对设备额定值进行评价的一种方法,可以提高设备的转移能力,满足日益增长的负荷需求。在本文中,我们提出了考虑电动汽车主动响应的模型和考虑电缆和变压器DTR的双层DNP模型,在上层,将Prim算法嵌入到粒子群优化(PSO)算法中,获得初始网格拓扑;在下一级,确定电缆和变压器的类型以及DTR设备的安装,然后进行二阶锥(SOC)松弛和变量乘积的线性化以满足电缆和变压器的非线性约束,并以迭代的方式求解上下模型。实例研究表明,DTR的实施有效地提高了电缆和变压器的传输能力,在保证供电提升96%的同时节省了4.8%的投资成本。此外,电动汽车的主动响应率达到90%,可以进一步降低总成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
High Voltage
High Voltage Energy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍: High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include: Electrical Insulation ● Outdoor, indoor, solid, liquid and gas insulation ● Transient voltages and overvoltage protection ● Nano-dielectrics and new insulation materials ● Condition monitoring and maintenance Discharge and plasmas, pulsed power ● Electrical discharge, plasma generation and applications ● Interactions of plasma with surfaces ● Pulsed power science and technology High-field effects ● Computation, measurements of Intensive Electromagnetic Field ● Electromagnetic compatibility ● Biomedical effects ● Environmental effects and protection High Voltage Engineering ● Design problems, testing and measuring techniques ● Equipment development and asset management ● Smart Grid, live line working ● AC/DC power electronics ● UHV power transmission Special Issues. Call for papers: Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信