Song Xiao, Haoran Xia, Zhanyuan Li, Yifan Wang, Ju Tang, Xiaoxing Zhang, Yi Li
{"title":"提高C4F7N基环保气体绝缘设备中铜的耐腐蚀性能","authors":"Song Xiao, Haoran Xia, Zhanyuan Li, Yifan Wang, Ju Tang, Xiaoxing Zhang, Yi Li","doi":"10.1049/hve2.70018","DOIUrl":null,"url":null,"abstract":"Perfluoroisobutyronitrile (C<sub>4</sub>F<sub>7</sub>N) is recognised as the next-generation dielectric medium for eco-friendly gas-insulated equipment (GIE). However, there is gas metal incompatibility in strong electromagnetic environments and environmentally friendly insulating gas atmospheres that endangers the operational safety and service life of GIE. Here, a solvent-induced grain boundary reconstruction method was proposed to prepare corrosion-resistant copper rapidly. Accordingly, the partial discharge-induced gas–metal interaction was simulated and the corrosion resistance properties of copper were evaluated. Additionally, the gas–solid interaction mechanism was investigated and the improvement mechanism of the proposed method on the stability of the gas–solid interface was discussed. Related results provide a reference for the development and application reliability of C<sub>4</sub>F<sub>7</sub>N-based eco-friendly GIE.","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"123 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Corrosion Resistance of Copper for C4F7N Based Eco-Friendly Gas-Insulated Equipment\",\"authors\":\"Song Xiao, Haoran Xia, Zhanyuan Li, Yifan Wang, Ju Tang, Xiaoxing Zhang, Yi Li\",\"doi\":\"10.1049/hve2.70018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perfluoroisobutyronitrile (C<sub>4</sub>F<sub>7</sub>N) is recognised as the next-generation dielectric medium for eco-friendly gas-insulated equipment (GIE). However, there is gas metal incompatibility in strong electromagnetic environments and environmentally friendly insulating gas atmospheres that endangers the operational safety and service life of GIE. Here, a solvent-induced grain boundary reconstruction method was proposed to prepare corrosion-resistant copper rapidly. Accordingly, the partial discharge-induced gas–metal interaction was simulated and the corrosion resistance properties of copper were evaluated. Additionally, the gas–solid interaction mechanism was investigated and the improvement mechanism of the proposed method on the stability of the gas–solid interface was discussed. Related results provide a reference for the development and application reliability of C<sub>4</sub>F<sub>7</sub>N-based eco-friendly GIE.\",\"PeriodicalId\":48649,\"journal\":{\"name\":\"High Voltage\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Voltage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1049/hve2.70018\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1049/hve2.70018","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Enhancing Corrosion Resistance of Copper for C4F7N Based Eco-Friendly Gas-Insulated Equipment
Perfluoroisobutyronitrile (C4F7N) is recognised as the next-generation dielectric medium for eco-friendly gas-insulated equipment (GIE). However, there is gas metal incompatibility in strong electromagnetic environments and environmentally friendly insulating gas atmospheres that endangers the operational safety and service life of GIE. Here, a solvent-induced grain boundary reconstruction method was proposed to prepare corrosion-resistant copper rapidly. Accordingly, the partial discharge-induced gas–metal interaction was simulated and the corrosion resistance properties of copper were evaluated. Additionally, the gas–solid interaction mechanism was investigated and the improvement mechanism of the proposed method on the stability of the gas–solid interface was discussed. Related results provide a reference for the development and application reliability of C4F7N-based eco-friendly GIE.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf