Development of 3 kV Low-Frequency Induction Voltage Divider Using Two-Stage Excitation

IF 4.4 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
High Voltage Pub Date : 2025-05-15 DOI:10.1049/hve2.70015
Xuan Li, Jiang Guo, Jiangang Bi, Hui Li
{"title":"Development of 3 kV Low-Frequency Induction Voltage Divider Using Two-Stage Excitation","authors":"Xuan Li, Jiang Guo, Jiangang Bi, Hui Li","doi":"10.1049/hve2.70015","DOIUrl":null,"url":null,"abstract":"To address the lack of voltage ratio standards for accuracy testing of low-frequency voltage transformers, it is necessary to develop a 3 kV low-frequency induction voltage divider. Firstly, based on the analysis of the error sources of the induction voltage divider, a method was proposed to calculate the excitation impedance of the induction voltage divider using complex magnetic permeability. A measurement circuit based on the lock-in principle was set up to measure the complex magnetic permeability of grained-oriented silicon steel 30P100 and permalloy 1J85 at different frequencies. Secondly, a 3 kV low-frequency induction voltage divider with a two-stage excitation and a series-wound ratio winding in 10 sections was designed. The errors of the two stages of the instrument transformers were calculated at 20 and 50 Hz, respectively. Finally, the divider's errors were calibrated at 20 and 50 Hz using the reference potential method. The results showed that, compared to 50 Hz, the excitation impedance of the two stages decreased and the errors increased at 20 Hz, with the overall error of the induction voltage divider being better at 50 Hz than at 20 Hz. Experimental measurements indicated that at 20 Hz, the ratio error and phase error of the 3 kV two-stage excitation induction voltage divider were better than 1 × 10<sup>−5</sup>, whereas at 50 Hz, the errors were better than 1 × 10<sup>−6</sup>. This study provides support for the accuracy testing of voltage transformers used in low-frequency flexible AC transmission projects.","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"32 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1049/hve2.70015","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To address the lack of voltage ratio standards for accuracy testing of low-frequency voltage transformers, it is necessary to develop a 3 kV low-frequency induction voltage divider. Firstly, based on the analysis of the error sources of the induction voltage divider, a method was proposed to calculate the excitation impedance of the induction voltage divider using complex magnetic permeability. A measurement circuit based on the lock-in principle was set up to measure the complex magnetic permeability of grained-oriented silicon steel 30P100 and permalloy 1J85 at different frequencies. Secondly, a 3 kV low-frequency induction voltage divider with a two-stage excitation and a series-wound ratio winding in 10 sections was designed. The errors of the two stages of the instrument transformers were calculated at 20 and 50 Hz, respectively. Finally, the divider's errors were calibrated at 20 and 50 Hz using the reference potential method. The results showed that, compared to 50 Hz, the excitation impedance of the two stages decreased and the errors increased at 20 Hz, with the overall error of the induction voltage divider being better at 50 Hz than at 20 Hz. Experimental measurements indicated that at 20 Hz, the ratio error and phase error of the 3 kV two-stage excitation induction voltage divider were better than 1 × 10−5, whereas at 50 Hz, the errors were better than 1 × 10−6. This study provides support for the accuracy testing of voltage transformers used in low-frequency flexible AC transmission projects.
两级励磁3kv低频感应分压器的研制
针对低频电压互感器精度检测缺乏电压比标准的问题,有必要研制一种3kv低频感应分压器。首先,在分析感应分压器误差源的基础上,提出了一种利用复磁导率计算感应分压器激励阻抗的方法。建立了基于锁相原理的测量电路,测量了晶粒取向硅钢30P100和波莫合金1J85在不同频率下的复磁导率。其次,设计了一种两级励磁、10段串绕比绕组的3kv低频感应分压器。分别计算了仪表变压器在20 Hz和50 Hz下的两级误差。最后,采用参考电位法在20 Hz和50 Hz下标定分压器的误差。结果表明:与50 Hz相比,20 Hz时两级的激励阻抗减小,误差增大,且50 Hz时感应分压器的总体误差优于20 Hz;实验测量表明,在20 Hz时,3kv两级励磁感应分压器的比值误差和相位误差优于1 × 10−5,而在50 Hz时,其误差优于1 × 10−6。本研究为低频柔性交流输电工程中电压互感器的精度测试提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
High Voltage
High Voltage Energy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍: High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include: Electrical Insulation ● Outdoor, indoor, solid, liquid and gas insulation ● Transient voltages and overvoltage protection ● Nano-dielectrics and new insulation materials ● Condition monitoring and maintenance Discharge and plasmas, pulsed power ● Electrical discharge, plasma generation and applications ● Interactions of plasma with surfaces ● Pulsed power science and technology High-field effects ● Computation, measurements of Intensive Electromagnetic Field ● Electromagnetic compatibility ● Biomedical effects ● Environmental effects and protection High Voltage Engineering ● Design problems, testing and measuring techniques ● Equipment development and asset management ● Smart Grid, live line working ● AC/DC power electronics ● UHV power transmission Special Issues. Call for papers: Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信