Mohammad Amin Jangjoo, Mehdi Allahbakhshi, Hassan Reza Mirzaei, Ali Abooee
{"title":"用超高频技术定位电力变压器局部放电","authors":"Mohammad Amin Jangjoo, Mehdi Allahbakhshi, Hassan Reza Mirzaei, Ali Abooee","doi":"10.1049/hve2.70022","DOIUrl":null,"url":null,"abstract":"This article deals with the methods of finding partial discharge (PD) location in power transformers using ultra high frequency (UHF) measurements. The UHF technique utilises two methods to find the PD location, that is, the shortest path method and hyperbolic method. The shortest path method works based on the comparison of the measured data and the ones in the database. In the hyperbolic method, a hyperbolic equation is obtained between each two element subset of sensors. The coordinate that best fits all equations is known as the PD location, and can be obtained in three different ways, that is, iterative algorithms, the Fang method and Chan method. The convergence of iterative algorithms is limited by poor initial estimate, overshoot, mitigation of non-convergence etc. The Fang and Chan methods are two closed-form solutions that are used in the communication system to find the radiation source location. This article explains how to use these two methods to obtain the PD coordinate inside the power transformer. These two methods can find exactly the coordinate that best fits all hyperbolic equations. At the end of this article, several tests are carried out through CST software and the PD locations is estimated by all presented methods. The simulation results show how the Fang and Chan methods can overcome the limitations of the iterative method.","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"6 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial Discharge Localisation in Power Transformer by UHF Technique\",\"authors\":\"Mohammad Amin Jangjoo, Mehdi Allahbakhshi, Hassan Reza Mirzaei, Ali Abooee\",\"doi\":\"10.1049/hve2.70022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with the methods of finding partial discharge (PD) location in power transformers using ultra high frequency (UHF) measurements. The UHF technique utilises two methods to find the PD location, that is, the shortest path method and hyperbolic method. The shortest path method works based on the comparison of the measured data and the ones in the database. In the hyperbolic method, a hyperbolic equation is obtained between each two element subset of sensors. The coordinate that best fits all equations is known as the PD location, and can be obtained in three different ways, that is, iterative algorithms, the Fang method and Chan method. The convergence of iterative algorithms is limited by poor initial estimate, overshoot, mitigation of non-convergence etc. The Fang and Chan methods are two closed-form solutions that are used in the communication system to find the radiation source location. This article explains how to use these two methods to obtain the PD coordinate inside the power transformer. These two methods can find exactly the coordinate that best fits all hyperbolic equations. At the end of this article, several tests are carried out through CST software and the PD locations is estimated by all presented methods. The simulation results show how the Fang and Chan methods can overcome the limitations of the iterative method.\",\"PeriodicalId\":48649,\"journal\":{\"name\":\"High Voltage\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Voltage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1049/hve2.70022\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1049/hve2.70022","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Partial Discharge Localisation in Power Transformer by UHF Technique
This article deals with the methods of finding partial discharge (PD) location in power transformers using ultra high frequency (UHF) measurements. The UHF technique utilises two methods to find the PD location, that is, the shortest path method and hyperbolic method. The shortest path method works based on the comparison of the measured data and the ones in the database. In the hyperbolic method, a hyperbolic equation is obtained between each two element subset of sensors. The coordinate that best fits all equations is known as the PD location, and can be obtained in three different ways, that is, iterative algorithms, the Fang method and Chan method. The convergence of iterative algorithms is limited by poor initial estimate, overshoot, mitigation of non-convergence etc. The Fang and Chan methods are two closed-form solutions that are used in the communication system to find the radiation source location. This article explains how to use these two methods to obtain the PD coordinate inside the power transformer. These two methods can find exactly the coordinate that best fits all hyperbolic equations. At the end of this article, several tests are carried out through CST software and the PD locations is estimated by all presented methods. The simulation results show how the Fang and Chan methods can overcome the limitations of the iterative method.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf