{"title":"Moret-Bailly families and non-liftable schemes","authors":"D. Roessler, Stefan Schroer","doi":"10.14231/ag-2022-004","DOIUrl":"https://doi.org/10.14231/ag-2022-004","url":null,"abstract":"Generalizing the Moret-Bailly pencil of supersingular abelian surfaces to higher dimensions, we construct for each field of characteristic p>0 a smooth projective variety with trivial dualizing sheaf that does not formally lift to characteristic zero. Our approach heavily relies on local unipotent group schemes, the Beauville--Bogomolov Decomposition for Kahler manifolds with $c_1=0$, and equivariant deformation theory","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44552043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Equivariant categories of symplectic surfaces and fixed loci of Bridgeland moduli spaces","authors":"T. Beckmann, G. Oberdieck","doi":"10.14231/ag-2022-012","DOIUrl":"https://doi.org/10.14231/ag-2022-012","url":null,"abstract":"Given an action of a finite group $G$ on the derived category of a smooth projective variety $X$ we relate the fixed loci of the induced $G$-action on moduli spaces of stable objects in $D^b(mathrm{Coh}(X))$ with moduli spaces of stable objects in the equivariant category $D^b(mathrm{Coh}(X))_G$. As an application we obtain a criterion for the equivariant category of a symplectic action on the derived category of a symplectic surface to be equivalent to the derived category of a surface. This generalizes the derived McKay correspondence, and yields a general framework for describing fixed loci of symplectic group actions on moduli spaces of stable objects on symplectic surfaces.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47773935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mather classes and conormal spaces of Schubert varieties in cominuscule spaces","authors":"L. Mihalcea, R. Singh","doi":"10.14231/ag-2023-019","DOIUrl":"https://doi.org/10.14231/ag-2023-019","url":null,"abstract":"Let $G/P$ be a complex cominuscule flag manifold. We prove a type independent formula for the torus equivariant Mather class of a Schubert variety in $G/P$, and for a Schubert variety pulled back via the natural projection $G/Q to G/P$. We apply this to find formulae for the local Euler obstructions of Schubert varieties, and for the torus equivariant localizations of the conormal spaces of these Schubert varieties. We conjecture positivity properties for the local Euler obstructions and for the Schubert expansion of Mather classes. We check the conjectures in many cases, by utilizing results of Boe and Fu about the characteristic cycles of the intersection homology sheaves of Schubert varieties. We also conjecture that certain `Mather polynomials' are unimodal in general Lie type, and log concave in type A.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":"1 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41949523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cohomological Hall algebra of Higgs sheaves on a curve","authors":"G. Farkas","doi":"10.14231/AG-2020-010","DOIUrl":"https://doi.org/10.14231/AG-2020-010","url":null,"abstract":"We define the cohomological Hall algebra ${AHA}_{Higgs(X)}$ of the ($2$-dimensional) Calabi-Yau category of Higgs sheaves on a smooth projective curve $X$, as well as its nilpotent and semistable variants, in the context of an arbitrary oriented Borel-Moore homology theory. In the case of usual Borel-Moore homology, ${AHA}_{Higgs(X)}$ is a module over the (universal) cohomology ring $mathbb{H}$ of the stacks of coherent sheaves on $X$ . We show that it is a torsion-free $mathbb{H}$-module, and we provide an explicit collection of generators (the collection of fundamental classes $[Coh_{r,d}]$ of the zero-sections of the map $Higgs_{r,d} to Coh_{r,d}$, for $r geq 0, d in Z$).","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":"1 1","pages":"346-376"},"PeriodicalIF":1.5,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66815974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nakano positivity of singular Hermitian metrics and vanishing theorems n of Demailly–Nadel–Nakano type","authors":"Takahiro Inayama","doi":"10.14231/AG-2022-003","DOIUrl":"https://doi.org/10.14231/AG-2022-003","url":null,"abstract":"In this article, we propose a general definition of Nakano semi-positivity of singular Hermitian metrics on holomorphic vector bundles. By using this positivity notion, we establish $L^2$-estimates for holomorphic vector bundles with Nakano positive singular Hermitian metrics. We also show vanishing theorems, which generalize both Nakano type and Demailly-Nadel type vanishing theorems.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49424525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New rational cubic fourfolds arising from Cremona transformations","authors":"Yu-Wei Fan, Kuan-Wen Lai","doi":"10.14231/ag-2023-014","DOIUrl":"https://doi.org/10.14231/ag-2023-014","url":null,"abstract":"Are Fourier--Mukai equivalent cubic fourfolds birationally equivalent? We obtain an affirmative answer to this question for very general cubic fourfolds of discriminant 20, where we produce birational maps via the Cremona transformation defined by the Veronese surface. Moreover, by studying how these maps act on the cubics known to be rational, we found new rational examples.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2020-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48147063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cancellation theorems for reciprocity sheaves","authors":"Alberto Merici, S. Saito","doi":"10.14231/ag-2023-005","DOIUrl":"https://doi.org/10.14231/ag-2023-005","url":null,"abstract":"We prove cancellation theorems for reciprocity sheaves and cube-invariant modulus sheaves with transfers of Kahn--Saito--Yamazaki, generalizing Voevodsky's cancellation theorem for $mathbf{A}^1$-invariant sheaves with transfers. As an application, we get some new formulas for internal hom's of the sheaves $Omega^i$ of absolute K\"ahler differentials.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2020-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45921610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Motivic integration on the Hitchin fibration","authors":"F. Loeser, Dimitri Wyss","doi":"10.14231/ag-2021-004","DOIUrl":"https://doi.org/10.14231/ag-2021-004","url":null,"abstract":"We prove that the moduli spaces of twisted $mathrm{SL}_n$ and $mathrm{PGL}_n$-Higgs bundles on a smooth projective curve have the same (stringy) class in the Grothendieck ring of rational Chow motives. On the level of Hodge numbers this was conjectured by Hausel and Thaddeus, and recently proven by Groechenig, Ziegler and the second author. To adapt their argument, which relies on p-adic integration, we use a version of motivic integration with values in rational Chow motives and the geometry of Neron models to evaluate such integrals on Hitchin fibers.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2019-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42418411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modular sheaves on hyperkähler varieties","authors":"K. O’Grady","doi":"10.14231/ag-2022-001","DOIUrl":"https://doi.org/10.14231/ag-2022-001","url":null,"abstract":"A torsion free sheaf on a hyperkahler variety $X$ is modular if the discriminant satisfies a certain condition, for example if it is a multiple of $c_2(X)$ the sheaf is modular. The definition is taylor made for torsion-free sheaves on a polarized hyperkahler variety (X,h) which deform to all small deformations of (X,h). For hyperkahlers deformation equivalent to $K3^{[2]}$ we prove an existence and uniqueness result for slope-stable modular vector bundles with certain ranks, $c_1$ and $c_2$. As a consequence we get uniqueness up to isomorphism of the tautological quotient rank $4$ vector bundles on the variety of lines on a generic cubic $4$-dimensional hypersurface, and on the Debarre-Voisin variety associated to a generic skew-symmetric $3$-form on a $10$-dimensional complex vector space. The last result implies that the period map from the moduli space of Debarre-Voisin varieties to the relevant period space is birational.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43655483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bivariant algebraic cobordism with bundles","authors":"Toni Annala, Shoji Yokura","doi":"10.14231/ag-2023-015","DOIUrl":"https://doi.org/10.14231/ag-2023-015","url":null,"abstract":"The purpose of this paper is to study an extended version of bivariant derived algebraic cobordism where the cycles carry a vector bundle on the source as additional data. We show that, over a field of characteristic 0, this extends the analogous homological theory of Lee and Pandharipande constructed earlier. We then proceed to study in detail the restricted theory where only rank 1 vector bundles are allowed, and prove a weak version of projective bundle formula for bivariant cobordism. Since the proof of this theorem works very generally, we introduce precobordism theories over arbitrary Noetherian rings of finite Krull dimension as a reasonable class of theories where the proof can be carried out, and prove some of their basic properties. These results can be considered as the first steps towards a Levine-Morel style algebraic cobordism over a base ring that is not a field of characteristic 0.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47135370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}