奇异Hermitian度量的Nakano正性与Demaily–Nadel–Nakano型的消失定理

IF 1.2 1区 数学 Q1 MATHEMATICS
Takahiro Inayama
{"title":"奇异Hermitian度量的Nakano正性与Demaily–Nadel–Nakano型的消失定理","authors":"Takahiro Inayama","doi":"10.14231/AG-2022-003","DOIUrl":null,"url":null,"abstract":"In this article, we propose a general definition of Nakano semi-positivity of singular Hermitian metrics on holomorphic vector bundles. By using this positivity notion, we establish $L^2$-estimates for holomorphic vector bundles with Nakano positive singular Hermitian metrics. We also show vanishing theorems, which generalize both Nakano type and Demailly-Nadel type vanishing theorems.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Nakano positivity of singular Hermitian metrics and vanishing theorems \\\\n of Demailly–Nadel–Nakano type\",\"authors\":\"Takahiro Inayama\",\"doi\":\"10.14231/AG-2022-003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose a general definition of Nakano semi-positivity of singular Hermitian metrics on holomorphic vector bundles. By using this positivity notion, we establish $L^2$-estimates for holomorphic vector bundles with Nakano positive singular Hermitian metrics. We also show vanishing theorems, which generalize both Nakano type and Demailly-Nadel type vanishing theorems.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/AG-2022-003\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2022-003","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18

摘要

本文给出了全纯向量丛上奇异Hermitian度量的Nakano半正性的一般定义。利用这个正性概念,我们建立了具有Nakano正奇异Hermitian度量的全纯向量丛的$L^2$-估计。我们还给出了消失定理,它推广了Nakano型和Demaily-Nadel型消失定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nakano positivity of singular Hermitian metrics and vanishing theorems \n of Demailly–Nadel–Nakano type
In this article, we propose a general definition of Nakano semi-positivity of singular Hermitian metrics on holomorphic vector bundles. By using this positivity notion, we establish $L^2$-estimates for holomorphic vector bundles with Nakano positive singular Hermitian metrics. We also show vanishing theorems, which generalize both Nakano type and Demailly-Nadel type vanishing theorems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信