hyperkähler品种的模块化滑轮

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
K. O’Grady
{"title":"hyperkähler品种的模块化滑轮","authors":"K. O’Grady","doi":"10.14231/ag-2022-001","DOIUrl":null,"url":null,"abstract":"A torsion free sheaf on a hyperkahler variety $X$ is modular if the discriminant satisfies a certain condition, for example if it is a multiple of $c_2(X)$ the sheaf is modular. The definition is taylor made for torsion-free sheaves on a polarized hyperkahler variety (X,h) which deform to all small deformations of (X,h). For hyperkahlers deformation equivalent to $K3^{[2]}$ we prove an existence and uniqueness result for slope-stable modular vector bundles with certain ranks, $c_1$ and $c_2$. As a consequence we get uniqueness up to isomorphism of the tautological quotient rank $4$ vector bundles on the variety of lines on a generic cubic $4$-dimensional hypersurface, and on the Debarre-Voisin variety associated to a generic skew-symmetric $3$-form on a $10$-dimensional complex vector space. The last result implies that the period map from the moduli space of Debarre-Voisin varieties to the relevant period space is birational.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Modular sheaves on hyperkähler varieties\",\"authors\":\"K. O’Grady\",\"doi\":\"10.14231/ag-2022-001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A torsion free sheaf on a hyperkahler variety $X$ is modular if the discriminant satisfies a certain condition, for example if it is a multiple of $c_2(X)$ the sheaf is modular. The definition is taylor made for torsion-free sheaves on a polarized hyperkahler variety (X,h) which deform to all small deformations of (X,h). For hyperkahlers deformation equivalent to $K3^{[2]}$ we prove an existence and uniqueness result for slope-stable modular vector bundles with certain ranks, $c_1$ and $c_2$. As a consequence we get uniqueness up to isomorphism of the tautological quotient rank $4$ vector bundles on the variety of lines on a generic cubic $4$-dimensional hypersurface, and on the Debarre-Voisin variety associated to a generic skew-symmetric $3$-form on a $10$-dimensional complex vector space. The last result implies that the period map from the moduli space of Debarre-Voisin varieties to the relevant period space is birational.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2019-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2022-001\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2022-001","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8

摘要

如果判别式满足某个条件,例如如果它是$c_2(X)$的倍数,则超kahler变种$X$上的无扭鞘是模的。该定义是对偏振超kahler变种(X,h)上的无扭滑轮的泰勒定义,该变种变形到(X,h)的所有小变形。对于等价于$K3^{[2]}$的超kahlers变形,我们证明了具有一定秩的斜坡稳定模向量束$c_1$和$c_2$的存在唯一性结果。因此,我们得到了在一般立方$4$-维超曲面上的各种线上的重言商秩$4$-向量丛的同构的唯一性,以及在$10$-维复向量空间上与一般斜对称$3$-形式相关的Debarre-Voisin多样性上的同构的惟一性。最后的结果表明,从Debarre-Voisin变种的模空间到相关周期空间的周期图是双向的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modular sheaves on hyperkähler varieties
A torsion free sheaf on a hyperkahler variety $X$ is modular if the discriminant satisfies a certain condition, for example if it is a multiple of $c_2(X)$ the sheaf is modular. The definition is taylor made for torsion-free sheaves on a polarized hyperkahler variety (X,h) which deform to all small deformations of (X,h). For hyperkahlers deformation equivalent to $K3^{[2]}$ we prove an existence and uniqueness result for slope-stable modular vector bundles with certain ranks, $c_1$ and $c_2$. As a consequence we get uniqueness up to isomorphism of the tautological quotient rank $4$ vector bundles on the variety of lines on a generic cubic $4$-dimensional hypersurface, and on the Debarre-Voisin variety associated to a generic skew-symmetric $3$-form on a $10$-dimensional complex vector space. The last result implies that the period map from the moduli space of Debarre-Voisin varieties to the relevant period space is birational.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信