Moret-Bailly families and non-liftable schemes

IF 1.2 1区 数学 Q1 MATHEMATICS
D. Roessler, Stefan Schroer
{"title":"Moret-Bailly families and non-liftable schemes","authors":"D. Roessler, Stefan Schroer","doi":"10.14231/ag-2022-004","DOIUrl":null,"url":null,"abstract":"Generalizing the Moret-Bailly pencil of supersingular abelian surfaces to higher dimensions, we construct for each field of characteristic p>0 a smooth projective variety with trivial dualizing sheaf that does not formally lift to characteristic zero. Our approach heavily relies on local unipotent group schemes, the Beauville--Bogomolov Decomposition for Kahler manifolds with $c_1=0$, and equivariant deformation theory","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2022-004","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Generalizing the Moret-Bailly pencil of supersingular abelian surfaces to higher dimensions, we construct for each field of characteristic p>0 a smooth projective variety with trivial dualizing sheaf that does not formally lift to characteristic zero. Our approach heavily relies on local unipotent group schemes, the Beauville--Bogomolov Decomposition for Kahler manifolds with $c_1=0$, and equivariant deformation theory
莫雷-贝利家族和不可解除的计划
将超奇异阿贝尔曲面的Moret-Bailly铅笔推广到更高的维度,我们为每个特征为p>0的场构造了一个光滑的射影变,它具有平凡的对偶束,不会在形式上提升到特征0。我们的方法很大程度上依赖于局部单幂群格式、c_1=0的卡勒流形的Beauville—Bogomolov分解和等变变形理论
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信