Motivic integration on the Hitchin fibration

IF 1.2 1区 数学 Q1 MATHEMATICS
F. Loeser, Dimitri Wyss
{"title":"Motivic integration on the Hitchin fibration","authors":"F. Loeser, Dimitri Wyss","doi":"10.14231/ag-2021-004","DOIUrl":null,"url":null,"abstract":"We prove that the moduli spaces of twisted $\\mathrm{SL}_n$ and $\\mathrm{PGL}_n$-Higgs bundles on a smooth projective curve have the same (stringy) class in the Grothendieck ring of rational Chow motives. On the level of Hodge numbers this was conjectured by Hausel and Thaddeus, and recently proven by Groechenig, Ziegler and the second author. To adapt their argument, which relies on p-adic integration, we use a version of motivic integration with values in rational Chow motives and the geometry of Neron models to evaluate such integrals on Hitchin fibers.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2021-004","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

Abstract

We prove that the moduli spaces of twisted $\mathrm{SL}_n$ and $\mathrm{PGL}_n$-Higgs bundles on a smooth projective curve have the same (stringy) class in the Grothendieck ring of rational Chow motives. On the level of Hodge numbers this was conjectured by Hausel and Thaddeus, and recently proven by Groechenig, Ziegler and the second author. To adapt their argument, which relies on p-adic integration, we use a version of motivic integration with values in rational Chow motives and the geometry of Neron models to evaluate such integrals on Hitchin fibers.
希钦氏纤维的动力整合
证明了光滑投影曲线上扭曲的$\ mathm {SL}_n$和$\ mathm {PGL}_n$-希格斯束的模空间在有理Chow动机的Grothendieck环上具有相同的(弦)类。在霍奇数的层面上,这是由豪塞尔和塞迪厄斯推测出来的,最近由格罗切尼格、齐格勒和第二作者证明。为了适应他们的论点,这依赖于p进积分,我们使用了理性Chow动机值和Neron模型几何的动机积分版本来评估希钦纤维上的积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信