由克雷莫纳变换引起的新的有理三次四重变换

IF 1.2 1区 数学 Q1 MATHEMATICS
Yu-Wei Fan, Kuan-Wen Lai
{"title":"由克雷莫纳变换引起的新的有理三次四重变换","authors":"Yu-Wei Fan, Kuan-Wen Lai","doi":"10.14231/ag-2023-014","DOIUrl":null,"url":null,"abstract":"Are Fourier--Mukai equivalent cubic fourfolds birationally equivalent? We obtain an affirmative answer to this question for very general cubic fourfolds of discriminant 20, where we produce birational maps via the Cremona transformation defined by the Veronese surface. Moreover, by studying how these maps act on the cubics known to be rational, we found new rational examples.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"New rational cubic fourfolds arising from Cremona transformations\",\"authors\":\"Yu-Wei Fan, Kuan-Wen Lai\",\"doi\":\"10.14231/ag-2023-014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Are Fourier--Mukai equivalent cubic fourfolds birationally equivalent? We obtain an affirmative answer to this question for very general cubic fourfolds of discriminant 20, where we produce birational maps via the Cremona transformation defined by the Veronese surface. Moreover, by studying how these maps act on the cubics known to be rational, we found new rational examples.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2023-014\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2023-014","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

傅里叶-Mukai等效三次四倍等效吗?对于判别式20的非常一般的三次四重,我们得到了这个问题的肯定答案,其中我们通过由Veronese曲面定义的Cremona变换产生了两国映射。此外,通过研究这些地图如何作用于已知的有理立方,我们发现了新的有理例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New rational cubic fourfolds arising from Cremona transformations
Are Fourier--Mukai equivalent cubic fourfolds birationally equivalent? We obtain an affirmative answer to this question for very general cubic fourfolds of discriminant 20, where we produce birational maps via the Cremona transformation defined by the Veronese surface. Moreover, by studying how these maps act on the cubics known to be rational, we found new rational examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信