Modular sheaves on hyperkähler varieties

IF 1.2 1区 数学 Q1 MATHEMATICS
K. O’Grady
{"title":"Modular sheaves on hyperkähler varieties","authors":"K. O’Grady","doi":"10.14231/ag-2022-001","DOIUrl":null,"url":null,"abstract":"A torsion free sheaf on a hyperkahler variety $X$ is modular if the discriminant satisfies a certain condition, for example if it is a multiple of $c_2(X)$ the sheaf is modular. The definition is taylor made for torsion-free sheaves on a polarized hyperkahler variety (X,h) which deform to all small deformations of (X,h). For hyperkahlers deformation equivalent to $K3^{[2]}$ we prove an existence and uniqueness result for slope-stable modular vector bundles with certain ranks, $c_1$ and $c_2$. As a consequence we get uniqueness up to isomorphism of the tautological quotient rank $4$ vector bundles on the variety of lines on a generic cubic $4$-dimensional hypersurface, and on the Debarre-Voisin variety associated to a generic skew-symmetric $3$-form on a $10$-dimensional complex vector space. The last result implies that the period map from the moduli space of Debarre-Voisin varieties to the relevant period space is birational.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2022-001","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

Abstract

A torsion free sheaf on a hyperkahler variety $X$ is modular if the discriminant satisfies a certain condition, for example if it is a multiple of $c_2(X)$ the sheaf is modular. The definition is taylor made for torsion-free sheaves on a polarized hyperkahler variety (X,h) which deform to all small deformations of (X,h). For hyperkahlers deformation equivalent to $K3^{[2]}$ we prove an existence and uniqueness result for slope-stable modular vector bundles with certain ranks, $c_1$ and $c_2$. As a consequence we get uniqueness up to isomorphism of the tautological quotient rank $4$ vector bundles on the variety of lines on a generic cubic $4$-dimensional hypersurface, and on the Debarre-Voisin variety associated to a generic skew-symmetric $3$-form on a $10$-dimensional complex vector space. The last result implies that the period map from the moduli space of Debarre-Voisin varieties to the relevant period space is birational.
hyperkähler品种的模块化滑轮
如果判别式满足某个条件,例如如果它是$c_2(X)$的倍数,则超kahler变种$X$上的无扭鞘是模的。该定义是对偏振超kahler变种(X,h)上的无扭滑轮的泰勒定义,该变种变形到(X,h)的所有小变形。对于等价于$K3^{[2]}$的超kahlers变形,我们证明了具有一定秩的斜坡稳定模向量束$c_1$和$c_2$的存在唯一性结果。因此,我们得到了在一般立方$4$-维超曲面上的各种线上的重言商秩$4$-向量丛的同构的唯一性,以及在$10$-维复向量空间上与一般斜对称$3$-形式相关的Debarre-Voisin多样性上的同构的惟一性。最后的结果表明,从Debarre-Voisin变种的模空间到相关周期空间的周期图是双向的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信