Jeff Achter, Sebastian Casalaina-Martin, Charles Vial
{"title":"A functorial approach to regular homomorphisms","authors":"Jeff Achter, Sebastian Casalaina-Martin, Charles Vial","doi":"10.14231/ag-2023-003","DOIUrl":"https://doi.org/10.14231/ag-2023-003","url":null,"abstract":"Classically, regular homomorphisms have been defined as a replacement for Abel--Jacobi maps for smooth varieties over an algebraically closed field. In this work, we interpret regular homomorphisms as morphisms from the functor of families of algebraically trivial cycles to abelian varieties and thereby define regular homomorphisms in the relative setting, e.g., families of schemes parameterized by a smooth variety over a given field. In that general setting, we establish the existence of an initial regular homomorphism, going by the name of algebraic representative, for codimension-2 cycles on a smooth proper scheme over the base. This extends a result of Murre for codimension-2 cycles on a smooth projective scheme over an algebraically closed field. In addition, we prove base change results for algebraic representatives as well as descent properties for algebraic representatives along separable field extensions. In the case where the base is a smooth variety over a subfield of the complex numbers we identify the algebraic representative for relative codimension-2 cycles with a subtorus of the intermediate Jacobian fibration which was constructed in previous work. \u0000At the heart of our descent arguments is a base change result along separable field extensions for Albanese torsors of separated, geometrically integral schemes of finite type over a field.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2019-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46252869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On a question of Swann (with an appendix by K?stutis ?esnavi?ius)","authors":"D. Popescu","doi":"10.14231/ag-2019-030","DOIUrl":"https://doi.org/10.14231/ag-2019-030","url":null,"abstract":"","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41949752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"$mathbb{P}$-functor versions of the Nakajima operators","authors":"Andreas Krug","doi":"10.14231/ag-2019-029","DOIUrl":"https://doi.org/10.14231/ag-2019-029","url":null,"abstract":"","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48843520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Punctual Hilbert schemes for Kleinian singularities as quiver varieties","authors":"Alastair Craw, Søren Gammelgaard, 'Ad'am Gyenge, Bal'azs SzendrHoi","doi":"10.14231/ag-2021-021","DOIUrl":"https://doi.org/10.14231/ag-2021-021","url":null,"abstract":"For a finite subgroup $Gammasubset mathrm{SL}(2,mathbb{C})$ and $ngeq 1$, we construct the (reduced scheme underlying the) Hilbert scheme of $n$ points on the Kleinian singularity $mathbb{C}^2/Gamma$ as a Nakajima quiver variety for the framed McKay quiver of $Gamma$, taken at a specific non-generic stability parameter. We deduce that this Hilbert scheme is irreducible (a result previously due to Zheng), normal, and admits a unique symplectic resolution. More generally, we introduce a class of algebras obtained from the preprojective algebra of the framed McKay quiver by a process called cornering, and we show that fine moduli spaces of cyclic modules over these new algebras are isomorphic to quiver varieties for the framed McKay quiver and certain non-generic choices of stability parameter.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2019-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45842032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Automorphism groups of cubic fourfolds and K3 categories","authors":"Genki Ouchi","doi":"10.14231/ag-2021-003","DOIUrl":"https://doi.org/10.14231/ag-2021-003","url":null,"abstract":"In this paper, we study relations between automorphism groups of cubic fourfolds and Kuznetsov components. Firstly, we characterize automorphism groups of cubic fourfolds as subgroups of autoequivalence groups of Kuznetsov components using Bridgeland stability conditions. Secondly, we compare automorphism groups of cubic fourfolds with automorphism groups of their associated K3 surfaces. Thirdly, we note that the existence of a non-trivial symplectic automorphism on a cubic fourfold is related to the existence of associated K3 surfaces.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2019-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44006586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hecke correspondences for Hilbert schemes of reducible locally planar curves","authors":"Oscar Kivinen","doi":"10.14231/ag-2019-024","DOIUrl":"https://doi.org/10.14231/ag-2019-024","url":null,"abstract":"Let C be a complex, reduced, locally planar curve. We extend the results of Rennemo [R14] to reducible curves by constructing an algebra A acting on V = ⊕ n>0H BM ∗ (C [n],Q), where C [n] is the Hilbert scheme of n points on C. If m is the number of irreducible components of C, we realize A as a subalgebra of the Weyl algebra of A2m. We also compute the representation V in the simplest reducible example of a node.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41894768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MBM classes and contraction loci on low-dimensional hyperkähler manifolds of K3${}^{[n]}$ type","authors":"E. Amerik, M. Verbitsky","doi":"10.14231/ag-2022-008","DOIUrl":"https://doi.org/10.14231/ag-2022-008","url":null,"abstract":"An MBM locus on a hyperkahler manifold is the union of all deformations of a minimal rational curve with negative self-intersection. MBM loci can be equivalently defined as centers of bimeromorphic contractions. It was shown that the MBM loci on deformation equivalent hyperkahler manifolds are diffeomorphic. We determine the MBM loci on a hyperkahler manifold of K3-type of low dimension using a deformation to a Hilbert scheme of a non-algebraic K3 surface.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2019-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49398062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-Ulrich representation type","authors":"Daniele Faenzi, F. Malaspina, Giangiacomo Sanna","doi":"10.14231/AG-2021-012","DOIUrl":"https://doi.org/10.14231/AG-2021-012","url":null,"abstract":"We show that a smooth projective non-degenerate arithmetically Cohen-Macaulay subvariety X of P^N infinite Cohen-Macaulay type becomes of finite Cohen-Macaulay type by removing Ulrich bundles if and only if N = 5 and X is a quartic scroll or the Segre product of a line and a plane. In turn, we give a complete and explicit classification of ACM bundles over these varieties.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2019-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42231540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Derived invariants from topological Hochschild homology","authors":"Benjamin Antieau, Daniel Bragg","doi":"10.14231/ag-2022-011","DOIUrl":"https://doi.org/10.14231/ag-2022-011","url":null,"abstract":"We consider derived invariants of varieties in positive characteristic arising from topological Hochschild homology. Using theory developed by Ekedahl and Illusie-Raynaud in their study of the slope spectral sequence, we examine the behavior under derived equivalences of various $p$-adic quantities related to Hodge-Witt and crystalline cohomology groups, including slope numbers, domino numbers, and Hodge-Witt numbers. As a consequence, we obtain restrictions on the Hodge numbers of derived equivalent varieties, partially extending results of Popa-Schell to positive characteristic.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45537518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Curve counting in genus one: Elliptic singularities and relative geometry","authors":"L. Battistella, Navid Nabijou, Dhruv Ranganathan","doi":"10.14231/AG-2021-020","DOIUrl":"https://doi.org/10.14231/AG-2021-020","url":null,"abstract":"We construct and study the reduced, relative, genus one Gromov-Witten theory of very ample pairs. These invariants form the principal component contribution to relative Gromov-Witten theory in genus one and are relative versions of Zinger's reduced Gromov-Witten invariants. We relate the relative and absolute theories by degeneration of the tangency conditions, and the resulting formulas generalise a well-known recursive calculation scheme put forward by Gathmann in genus zero. The geometric input is a desingularisation of the principal component of the moduli space of genus one logarithmic stable maps to a very ample pair, using the geometry of elliptic singularities. Our study passes through general techniques for calculating integrals on logarithmic blowups of moduli spaces of stable maps, which may be of independent interest.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48605490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}