作为颤动变体的Kleinian奇点的标点Hilbert格式

IF 1.2 1区 数学 Q1 MATHEMATICS
Alastair Craw, Søren Gammelgaard, 'Ad'am Gyenge, Bal'azs SzendrHoi
{"title":"作为颤动变体的Kleinian奇点的标点Hilbert格式","authors":"Alastair Craw, Søren Gammelgaard, 'Ad'am Gyenge, Bal'azs SzendrHoi","doi":"10.14231/ag-2021-021","DOIUrl":null,"url":null,"abstract":"For a finite subgroup $\\Gamma\\subset \\mathrm{SL}(2,\\mathbb{C})$ and $n\\geq 1$, we construct the (reduced scheme underlying the) Hilbert scheme of $n$ points on the Kleinian singularity $\\mathbb{C}^2/\\Gamma$ as a Nakajima quiver variety for the framed McKay quiver of $\\Gamma$, taken at a specific non-generic stability parameter. We deduce that this Hilbert scheme is irreducible (a result previously due to Zheng), normal, and admits a unique symplectic resolution. More generally, we introduce a class of algebras obtained from the preprojective algebra of the framed McKay quiver by a process called cornering, and we show that fine moduli spaces of cyclic modules over these new algebras are isomorphic to quiver varieties for the framed McKay quiver and certain non-generic choices of stability parameter.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Punctual Hilbert schemes for Kleinian singularities as quiver varieties\",\"authors\":\"Alastair Craw, Søren Gammelgaard, 'Ad'am Gyenge, Bal'azs SzendrHoi\",\"doi\":\"10.14231/ag-2021-021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a finite subgroup $\\\\Gamma\\\\subset \\\\mathrm{SL}(2,\\\\mathbb{C})$ and $n\\\\geq 1$, we construct the (reduced scheme underlying the) Hilbert scheme of $n$ points on the Kleinian singularity $\\\\mathbb{C}^2/\\\\Gamma$ as a Nakajima quiver variety for the framed McKay quiver of $\\\\Gamma$, taken at a specific non-generic stability parameter. We deduce that this Hilbert scheme is irreducible (a result previously due to Zheng), normal, and admits a unique symplectic resolution. More generally, we introduce a class of algebras obtained from the preprojective algebra of the framed McKay quiver by a process called cornering, and we show that fine moduli spaces of cyclic modules over these new algebras are isomorphic to quiver varieties for the framed McKay quiver and certain non-generic choices of stability parameter.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2021-021\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2021-021","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

摘要

对于有限子群$\Gamma\subet\mathrm{SL}(2,\mathbb{C})$和$n\geq1$,我们构造了Kleinian奇点$\mathbb{C}^2/\Gamma$上$n$点的Hilbert格式的(简化格式),作为$\Gamma$的框架McKay箭矢的Nakajima箭矢变体,取特定的非一般稳定性参数。我们推导出这个Hilbert格式是不可约的(这是之前由郑得到的结果),正规的,并且允许一个独特的辛分辨率。更一般地说,我们引入了一类由框架McKay箭袋的预投影代数通过一个称为转弯的过程获得的代数,并证明了这些新代数上循环模的精细模空间同构于框架McKay箭袋的箭袋变种和稳定性参数的某些非一般选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Punctual Hilbert schemes for Kleinian singularities as quiver varieties
For a finite subgroup $\Gamma\subset \mathrm{SL}(2,\mathbb{C})$ and $n\geq 1$, we construct the (reduced scheme underlying the) Hilbert scheme of $n$ points on the Kleinian singularity $\mathbb{C}^2/\Gamma$ as a Nakajima quiver variety for the framed McKay quiver of $\Gamma$, taken at a specific non-generic stability parameter. We deduce that this Hilbert scheme is irreducible (a result previously due to Zheng), normal, and admits a unique symplectic resolution. More generally, we introduce a class of algebras obtained from the preprojective algebra of the framed McKay quiver by a process called cornering, and we show that fine moduli spaces of cyclic modules over these new algebras are isomorphic to quiver varieties for the framed McKay quiver and certain non-generic choices of stability parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信