{"title":"作为颤动变体的Kleinian奇点的标点Hilbert格式","authors":"Alastair Craw, Søren Gammelgaard, 'Ad'am Gyenge, Bal'azs SzendrHoi","doi":"10.14231/ag-2021-021","DOIUrl":null,"url":null,"abstract":"For a finite subgroup $\\Gamma\\subset \\mathrm{SL}(2,\\mathbb{C})$ and $n\\geq 1$, we construct the (reduced scheme underlying the) Hilbert scheme of $n$ points on the Kleinian singularity $\\mathbb{C}^2/\\Gamma$ as a Nakajima quiver variety for the framed McKay quiver of $\\Gamma$, taken at a specific non-generic stability parameter. We deduce that this Hilbert scheme is irreducible (a result previously due to Zheng), normal, and admits a unique symplectic resolution. More generally, we introduce a class of algebras obtained from the preprojective algebra of the framed McKay quiver by a process called cornering, and we show that fine moduli spaces of cyclic modules over these new algebras are isomorphic to quiver varieties for the framed McKay quiver and certain non-generic choices of stability parameter.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Punctual Hilbert schemes for Kleinian singularities as quiver varieties\",\"authors\":\"Alastair Craw, Søren Gammelgaard, 'Ad'am Gyenge, Bal'azs SzendrHoi\",\"doi\":\"10.14231/ag-2021-021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a finite subgroup $\\\\Gamma\\\\subset \\\\mathrm{SL}(2,\\\\mathbb{C})$ and $n\\\\geq 1$, we construct the (reduced scheme underlying the) Hilbert scheme of $n$ points on the Kleinian singularity $\\\\mathbb{C}^2/\\\\Gamma$ as a Nakajima quiver variety for the framed McKay quiver of $\\\\Gamma$, taken at a specific non-generic stability parameter. We deduce that this Hilbert scheme is irreducible (a result previously due to Zheng), normal, and admits a unique symplectic resolution. More generally, we introduce a class of algebras obtained from the preprojective algebra of the framed McKay quiver by a process called cornering, and we show that fine moduli spaces of cyclic modules over these new algebras are isomorphic to quiver varieties for the framed McKay quiver and certain non-generic choices of stability parameter.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2021-021\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2021-021","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Punctual Hilbert schemes for Kleinian singularities as quiver varieties
For a finite subgroup $\Gamma\subset \mathrm{SL}(2,\mathbb{C})$ and $n\geq 1$, we construct the (reduced scheme underlying the) Hilbert scheme of $n$ points on the Kleinian singularity $\mathbb{C}^2/\Gamma$ as a Nakajima quiver variety for the framed McKay quiver of $\Gamma$, taken at a specific non-generic stability parameter. We deduce that this Hilbert scheme is irreducible (a result previously due to Zheng), normal, and admits a unique symplectic resolution. More generally, we introduce a class of algebras obtained from the preprojective algebra of the framed McKay quiver by a process called cornering, and we show that fine moduli spaces of cyclic modules over these new algebras are isomorphic to quiver varieties for the framed McKay quiver and certain non-generic choices of stability parameter.
期刊介绍:
This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.