可约局部平面曲线Hilbert格式的Hecke对应

IF 1.2 1区 数学 Q1 MATHEMATICS
Oscar Kivinen
{"title":"可约局部平面曲线Hilbert格式的Hecke对应","authors":"Oscar Kivinen","doi":"10.14231/ag-2019-024","DOIUrl":null,"url":null,"abstract":"Let C be a complex, reduced, locally planar curve. We extend the results of Rennemo [R14] to reducible curves by constructing an algebra A acting on V = ⊕ n>0H BM ∗ (C [n],Q), where C [n] is the Hilbert scheme of n points on C. If m is the number of irreducible components of C, we realize A as a subalgebra of the Weyl algebra of A2m. We also compute the representation V in the simplest reducible example of a node.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Hecke correspondences for Hilbert schemes of reducible locally planar curves\",\"authors\":\"Oscar Kivinen\",\"doi\":\"10.14231/ag-2019-024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let C be a complex, reduced, locally planar curve. We extend the results of Rennemo [R14] to reducible curves by constructing an algebra A acting on V = ⊕ n>0H BM ∗ (C [n],Q), where C [n] is the Hilbert scheme of n points on C. If m is the number of irreducible components of C, we realize A as a subalgebra of the Weyl algebra of A2m. We also compute the representation V in the simplest reducible example of a node.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2019-024\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2019-024","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

设C是一条复杂的、简化的局部平面曲线。通过构造作用于V =⊕n>0H BM * (C [n],Q)的代数A,将Rennemo [R14]的结果推广到可约曲线,其中C [n]是C上n个点的Hilbert格式。如果m是C的不可约分量的个数,我们实现了A是A2m的Weyl代数的子代数。我们还计算了一个节点的最简单可约示例中的表示V。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hecke correspondences for Hilbert schemes of reducible locally planar curves
Let C be a complex, reduced, locally planar curve. We extend the results of Rennemo [R14] to reducible curves by constructing an algebra A acting on V = ⊕ n>0H BM ∗ (C [n],Q), where C [n] is the Hilbert scheme of n points on C. If m is the number of irreducible components of C, we realize A as a subalgebra of the Weyl algebra of A2m. We also compute the representation V in the simplest reducible example of a node.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信