Curve counting in genus one: Elliptic singularities and relative geometry

IF 1.2 1区 数学 Q1 MATHEMATICS
L. Battistella, Navid Nabijou, Dhruv Ranganathan
{"title":"Curve counting in genus one: Elliptic singularities and relative geometry","authors":"L. Battistella, Navid Nabijou, Dhruv Ranganathan","doi":"10.14231/AG-2021-020","DOIUrl":null,"url":null,"abstract":"We construct and study the reduced, relative, genus one Gromov-Witten theory of very ample pairs. These invariants form the principal component contribution to relative Gromov-Witten theory in genus one and are relative versions of Zinger's reduced Gromov-Witten invariants. We relate the relative and absolute theories by degeneration of the tangency conditions, and the resulting formulas generalise a well-known recursive calculation scheme put forward by Gathmann in genus zero. The geometric input is a desingularisation of the principal component of the moduli space of genus one logarithmic stable maps to a very ample pair, using the geometry of elliptic singularities. Our study passes through general techniques for calculating integrals on logarithmic blowups of moduli spaces of stable maps, which may be of independent interest.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2021-020","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

Abstract

We construct and study the reduced, relative, genus one Gromov-Witten theory of very ample pairs. These invariants form the principal component contribution to relative Gromov-Witten theory in genus one and are relative versions of Zinger's reduced Gromov-Witten invariants. We relate the relative and absolute theories by degeneration of the tangency conditions, and the resulting formulas generalise a well-known recursive calculation scheme put forward by Gathmann in genus zero. The geometric input is a desingularisation of the principal component of the moduli space of genus one logarithmic stable maps to a very ample pair, using the geometry of elliptic singularities. Our study passes through general techniques for calculating integrals on logarithmic blowups of moduli spaces of stable maps, which may be of independent interest.
一属曲线计数:椭圆奇点和相对几何
我们构造并研究了非常充分对的约化相对亏格一Gromov-Witten理论。这些不变量构成了亏格一中相对Gromov-Witten理论的主成分贡献,是Zinger的约化Gromov-威滕不变量的相对版本。我们通过切条件的退化将相对论和绝对论联系起来,得到的公式推广了Gathmann在亏格零中提出的一个著名的递归计算方案。几何输入是使用椭圆奇点的几何,将亏格一对数稳定映射的模空间的主分量分解为非常充分的对。我们的研究通过了计算稳定映射模空间对数膨胀积分的一般技术,这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信