{"title":"Curve counting in genus one: Elliptic singularities and relative geometry","authors":"L. Battistella, Navid Nabijou, Dhruv Ranganathan","doi":"10.14231/AG-2021-020","DOIUrl":null,"url":null,"abstract":"We construct and study the reduced, relative, genus one Gromov-Witten theory of very ample pairs. These invariants form the principal component contribution to relative Gromov-Witten theory in genus one and are relative versions of Zinger's reduced Gromov-Witten invariants. We relate the relative and absolute theories by degeneration of the tangency conditions, and the resulting formulas generalise a well-known recursive calculation scheme put forward by Gathmann in genus zero. The geometric input is a desingularisation of the principal component of the moduli space of genus one logarithmic stable maps to a very ample pair, using the geometry of elliptic singularities. Our study passes through general techniques for calculating integrals on logarithmic blowups of moduli spaces of stable maps, which may be of independent interest.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2021-020","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8
Abstract
We construct and study the reduced, relative, genus one Gromov-Witten theory of very ample pairs. These invariants form the principal component contribution to relative Gromov-Witten theory in genus one and are relative versions of Zinger's reduced Gromov-Witten invariants. We relate the relative and absolute theories by degeneration of the tangency conditions, and the resulting formulas generalise a well-known recursive calculation scheme put forward by Gathmann in genus zero. The geometric input is a desingularisation of the principal component of the moduli space of genus one logarithmic stable maps to a very ample pair, using the geometry of elliptic singularities. Our study passes through general techniques for calculating integrals on logarithmic blowups of moduli spaces of stable maps, which may be of independent interest.
期刊介绍:
This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.