Non-Ulrich representation type

IF 1.2 1区 数学 Q1 MATHEMATICS
Daniele Faenzi, F. Malaspina, Giangiacomo Sanna
{"title":"Non-Ulrich representation type","authors":"Daniele Faenzi, F. Malaspina, Giangiacomo Sanna","doi":"10.14231/AG-2021-012","DOIUrl":null,"url":null,"abstract":"We show that a smooth projective non-degenerate arithmetically Cohen-Macaulay subvariety X of P^N infinite Cohen-Macaulay type becomes of finite Cohen-Macaulay type by removing Ulrich bundles if and only if N = 5 and X is a quartic scroll or the Segre product of a line and a plane. In turn, we give a complete and explicit classification of ACM bundles over these varieties.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2021-012","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We show that a smooth projective non-degenerate arithmetically Cohen-Macaulay subvariety X of P^N infinite Cohen-Macaulay type becomes of finite Cohen-Macaulay type by removing Ulrich bundles if and only if N = 5 and X is a quartic scroll or the Segre product of a line and a plane. In turn, we give a complete and explicit classification of ACM bundles over these varieties.
非ulrich表示类型
我们通过移除Ulrich丛,证明了P^N无限Cohen—Macaulay型的光滑投影非退化算术Cohen—麦考利子变种X变为有限Cohen—Macaulay型,当且仅当N=5且X是四次涡旋或线与平面的Segre积。反过来,我们给出了ACM束在这些变种上的完整而明确的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信