npj Flexible Electronics最新文献

筛选
英文 中文
Facile strategy for uniform gold coating on silver nanowires embedded PDMS for soft electronics 在嵌入 PDMS 的银纳米线上均匀镀金以制造软电子器件的简便策略
IF 12.3 1区 材料科学
npj Flexible Electronics Pub Date : 2024-10-04 DOI: 10.1038/s41528-024-00349-5
Haechan Park, Sehyun Kim, Juyeong Lee, Kwangmin Kim, Hanah Na, Yeeun Kim, Daeun Kim, Donghyung Shin, BongSoo Kim, Kyoseung Sim
{"title":"Facile strategy for uniform gold coating on silver nanowires embedded PDMS for soft electronics","authors":"Haechan Park, Sehyun Kim, Juyeong Lee, Kwangmin Kim, Hanah Na, Yeeun Kim, Daeun Kim, Donghyung Shin, BongSoo Kim, Kyoseung Sim","doi":"10.1038/s41528-024-00349-5","DOIUrl":"10.1038/s41528-024-00349-5","url":null,"abstract":"Silver nanowires-embedded polydimethylsiloxane (AgNWs/PDMS) electrodes are promising components for various soft electronics, but face energy mismatch with organic semiconductors. Attempts at galvanic replacement, involving spontaneous gold (Au) formation on the electrodes, often result in non-uniform and particulate Au coatings, compromising device performance and stability. In this study, we introduce a novel approach for achieving a uniform and complete Au coating on AgNWs/PDMS electrodes by adding NaCl to the Au complex solution. This addition slows down the galvanic replacement process and prevents precipitation, enabling a uniform and complete Au coating on the AgNWs surface. Such coating significantly reduces contact resistance (RC), thereby enhancing the electrical characteristics of p-type organic transistors. Furthermore, the development of high-performance, fully soft organic transistors was achieved incorporating an organic semiconductor-elastomer blend. Additionally, reliable, mechanically stable soft glucose sensor was developed, taking advantage of the complete Au coating, which protects against oxidation during the glucose sensing process.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-10"},"PeriodicalIF":12.3,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00349-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-adaptive epidermal blood flow sensor for high-flux vascular access monitoring of hemodialysis patients 用于血液透析患者高通量血管通路监测的自适应表皮血流传感器
IF 12.3 1区 材料科学
npj Flexible Electronics Pub Date : 2024-10-02 DOI: 10.1038/s41528-024-00342-y
Yuqi Tian, Kai Yang, Yicong Wang, Jie Wang, Andrea S. Carlini, Zhinan Zhang, Yujun Deng, Jinyun Tan, Linfa Peng, Bo Yu, Zhongqin Lin
{"title":"Self-adaptive epidermal blood flow sensor for high-flux vascular access monitoring of hemodialysis patients","authors":"Yuqi Tian, Kai Yang, Yicong Wang, Jie Wang, Andrea S. Carlini, Zhinan Zhang, Yujun Deng, Jinyun Tan, Linfa Peng, Bo Yu, Zhongqin Lin","doi":"10.1038/s41528-024-00342-y","DOIUrl":"10.1038/s41528-024-00342-y","url":null,"abstract":"Well-functioning vascular access (VA) is essential for hemodialysis treatment in patients with end-stage renal disease (ESRD). However, continuous and accurate monitoring of blood flow to assess high-flux VA during hospitalization or at home is not feasible for either clinical instruments or wearable sensors. Here, we report the design and preclinical validation of a high-precision, long-term, epidermal blood flow sensor that self-adapts to unavoidable sensor-mounting deviations on the skin and is compatible with individual tissue differences. Specifically, the technology is based on thermal dissipation of the skin, and improves the signal-to-error ratio surpassing 4 times when measuring high-flux blood (100–600 mL/min). In preclinical validation, the sensor is compared with the Doppler ultrasound and demonstrate a blood flow resolution of 10–50 mL/min. Furthermore, it is highly-integrated and wearable, measuring 36 × 50 mm2. The sensor paves the way for accurate, convenient, high-flux blood monitoring, offering significant potential to extend the lives of patients with ESRD.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-14"},"PeriodicalIF":12.3,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00342-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible electronic-photonic 3D integration from ultrathin polymer chiplets 利用超薄聚合物芯片实现柔性电子-光子三维集成
IF 12.3 1区 材料科学
npj Flexible Electronics Pub Date : 2024-10-01 DOI: 10.1038/s41528-024-00344-w
Yunxiang Huang, Gen Li, Tianyu Bai, Yieljae Shin, Xiaoxin Wang, Alexander Ian More, Pierre Boucher, Chandramouli Chandrasekaran, Jifeng Liu, Hui Fang
{"title":"Flexible electronic-photonic 3D integration from ultrathin polymer chiplets","authors":"Yunxiang Huang, Gen Li, Tianyu Bai, Yieljae Shin, Xiaoxin Wang, Alexander Ian More, Pierre Boucher, Chandramouli Chandrasekaran, Jifeng Liu, Hui Fang","doi":"10.1038/s41528-024-00344-w","DOIUrl":"10.1038/s41528-024-00344-w","url":null,"abstract":"Integrating flexible electronics and photonics can create revolutionary technologies, but combining these components on a single polymer device has been difficult, particularly for high-volume manufacturing. Here, we present a robust chiplet-level heterogeneous integration of polymer-based circuits (CHIP), where ultrathin polymer electronic and optoelectronic chiplets are vertically bonded at room temperature and shaped into application-specific forms with monolithic Input/Output (I/O). This process was used to develop a flexible 3D integrated optrode with high-density microelectrodes for electrical recording, micro light-emitting diodes (μLEDs) for optogenetic stimulation, temperature sensors for bio-safe operations, and shielding designs to prevent optoelectronic artifacts. CHIP enables simple, high-yield, and scalable 3D integration, double-sided area utilization, and miniaturization of connection I/O. Systematic characterization demonstrated the scheme’s success and also identified frequency-dependent origins of optoelectronic artifacts. We envision CHIP being applied to numerous polymer-based devices for a wide range of applications.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-11"},"PeriodicalIF":12.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00344-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Body-worn and self-powered flexible optoelectronic device for metronomic photodynamic therapy 用于节拍光动力疗法的体戴式自供电柔性光电设备
IF 12.3 1区 材料科学
npj Flexible Electronics Pub Date : 2024-09-30 DOI: 10.1038/s41528-024-00345-9
Jianhong Zhang, Xinhui Mao, Qingyan Jia, Renhao Nie, Yangyang Gao, Kai Tao, Honglong Chang, Peng Li, Wei Huang
{"title":"Body-worn and self-powered flexible optoelectronic device for metronomic photodynamic therapy","authors":"Jianhong Zhang, Xinhui Mao, Qingyan Jia, Renhao Nie, Yangyang Gao, Kai Tao, Honglong Chang, Peng Li, Wei Huang","doi":"10.1038/s41528-024-00345-9","DOIUrl":"10.1038/s41528-024-00345-9","url":null,"abstract":"Photodynamic therapy (PDT) as a clinical method relies on appropriate light delivery to activate photosensitizers, usually necessitates the utilization of cumbersome surgical instruments and high irradiation intensity, along with the requirement for hospitalization. To extend the applicability of PDT beyond hospital for better patient mobility, we design a wearable and self-powered metronomic PDT (mPDT) system for chronic wound infection treatment. A flexible alternative current electroluminescent (ACEL) device is constructed through sandwiching an emissive layer between conductive hydrogel electrodes. This ACEL device works as a therapeutic patch by loading photosensitizer (PS) in its bottom hydrogel electrode, thus aviods the intravenous administration to patients. Under the triboelectric nanogenerator generated AC pulse, the electroluminescence produced from emissive layer can be absorbed by the PS-loaded electrode to generate reactive oxygen species for mPDT. Benefited from its arbitrary tailorability, this device can be customized into on-demand shapes and sizes. Using diabetic infected wound as a model condition, this ACEL mPDT device effectively eliminates drug-resistant bacteria and accelerates wound healing. Thus, the body-worn optoelectronic device successfully avoids the utilization of extracorporeal physical light and power sources, providing a promising strategy for convenient, user-friendly, and prolonged treatment of superficial diseases.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-14"},"PeriodicalIF":12.3,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00345-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stretchable, transparent and multifunctional PVC-gel heater: a novel approach to skin-mountable, wearable thermal devices 可拉伸、透明和多功能聚氯乙烯凝胶加热器:皮肤安装式可穿戴热设备的新方法
IF 12.3 1区 材料科学
npj Flexible Electronics Pub Date : 2024-09-19 DOI: 10.1038/s41528-024-00348-6
Minki Kim, Minjae Cho, Chongyoung Chung, Ki-Uk Kyung
{"title":"Stretchable, transparent and multifunctional PVC-gel heater: a novel approach to skin-mountable, wearable thermal devices","authors":"Minki Kim, Minjae Cho, Chongyoung Chung, Ki-Uk Kyung","doi":"10.1038/s41528-024-00348-6","DOIUrl":"10.1038/s41528-024-00348-6","url":null,"abstract":"Electric heaters based on functional materials and innovative designs have been developed for various applications. In this paper, we propose a soft dielectric heater (SDH) using polyvinyl chloride-gel (PVC-gel) as the dielectric heater and hydrogel as stretchable electrodes. Under an AC voltage, the leakage current in the PVC-gel leads to continuous injection and discharge of charges, causing the polarized plasticizers and flexible PVC chains to vibrate and collide, thereby generating heat through dielectric heating. Furthermore, the SDH generates a uniform temperature distribution even under strains up to 400%. Besides, high transmittance over 86% across the visible range renders it suitable for wearable or skin-mountable heaters from an esthetic viewpoint. Its capacitor-like structure achieves a scalable design, enabling extension from a singular cell to a row/column addressable and pixelated array of heaters. The 5 × 5 SDH array can deliver varied thermal information and sensations while maintaining performance even when stretched.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-12"},"PeriodicalIF":12.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00348-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interplay between strain and charge in Cu(In,Ga)Se2 flexible photovoltaics Cu(In,Ga)Se2 柔性光伏器件中应变与电荷之间的相互作用
IF 12.3 1区 材料科学
npj Flexible Electronics Pub Date : 2024-09-16 DOI: 10.1038/s41528-024-00347-7
Ha Kyung Park, Kanghoon Yim, Jiyoon Lee, Yunae Cho, Inyoung Jeong, Donghyeop Shin, Jihye Gwak, Aron Walsh, Kihwan Kim, William Jo
{"title":"Interplay between strain and charge in Cu(In,Ga)Se2 flexible photovoltaics","authors":"Ha Kyung Park, Kanghoon Yim, Jiyoon Lee, Yunae Cho, Inyoung Jeong, Donghyeop Shin, Jihye Gwak, Aron Walsh, Kihwan Kim, William Jo","doi":"10.1038/s41528-024-00347-7","DOIUrl":"10.1038/s41528-024-00347-7","url":null,"abstract":"Flexible and lightweight Cu(In,Ga)Se2 (CIGS) thin-film solar cells are promising for versatile applications, but there is limited understanding of stress-induced changes. In this study, the charge carrier generation and trapping behavior under mechanical stress was investigated using flexible CIGS thin-film solar cells with various alkali treatments. Surface current at the CIGS surface decreased by convex bending, which occurs less with the incorporation of alkali metals. The formation energy of the carrier generating defects increased in convex bending environments clarifying the degradation of the surface current. Moreover, alkali-related defects had lower formation energy than the intrinsic acceptors, mitigating current degradation in mechanical stress condition. The altered defect energy levels were attributed to the deformation of the crystal structure under bending states. This study provides insights into the mitigating of strain-induced charge degradation for enhancing the performance and robustness of flexible CIGS photovoltaic devices.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-8"},"PeriodicalIF":12.3,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00347-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Creating highly efficient stretchable OLEDs with nanowavy structures for angle-independent narrow band emission 利用纳米波浪结构制造高效可拉伸有机发光二极管,实现与角度无关的窄带发射
IF 12.3 1区 材料科学
npj Flexible Electronics Pub Date : 2024-09-10 DOI: 10.1038/s41528-024-00343-x
Ajay Nimbalkar, Aqsa Irfan, Min Chul Suh
{"title":"Creating highly efficient stretchable OLEDs with nanowavy structures for angle-independent narrow band emission","authors":"Ajay Nimbalkar, Aqsa Irfan, Min Chul Suh","doi":"10.1038/s41528-024-00343-x","DOIUrl":"10.1038/s41528-024-00343-x","url":null,"abstract":"Stretchable organic light-emitting diodes (SOLEDs) have been the challenging class of OLEDs as they have limited processability to fabricate a design that can withstand external deformation. Herein, we demonstrated the highly efficient top-emitting geometrical stretchable OLED (GSOLED) by incorporating the prestretched elastomer with optical adhesive film. The experimental and theoretical characterizations verified the enhancement of device efficiencies with the light extraction phenomenon brought by nanowavy corrugated structures. Furthermore, GSOLED shows stability in stretchable conditions and displays narrower emission spectrum with improved color purity. The full width at half maximum (FWHM) of 21 nm shows narrowband emission with a high current efficiency and EQE of 221 cd A−1 and 39.50%. This work marks a significant step forward, providing unprecedented insights into the factors influencing device performance in current and future material systems for stretchable organic light-emitting diodes.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-11"},"PeriodicalIF":12.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00343-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strong and high-conductivity hydrogels with all-polymer nanofibrous networks for applications as high-capacitance flexible electrodes 具有全聚合物纳米纤维网络的高导电性强水凝胶可用作高电容柔性电极
IF 12.3 1区 材料科学
npj Flexible Electronics Pub Date : 2024-09-09 DOI: 10.1038/s41528-024-00346-8
Huimin He, Yaqing Chen, Aoyang Pu, Li Wang, Wenxiu Li, Xiaoyu Zhou, Chuyang Y. Tang, Kiwon Ban, Mengsu Yang, Lizhi Xu
{"title":"Strong and high-conductivity hydrogels with all-polymer nanofibrous networks for applications as high-capacitance flexible electrodes","authors":"Huimin He, Yaqing Chen, Aoyang Pu, Li Wang, Wenxiu Li, Xiaoyu Zhou, Chuyang Y. Tang, Kiwon Ban, Mengsu Yang, Lizhi Xu","doi":"10.1038/s41528-024-00346-8","DOIUrl":"10.1038/s41528-024-00346-8","url":null,"abstract":"Flexible devices, such as soft bioelectronics and stretchable supercapacitors, have their practical performance limited by electrodes which are desired to have high conductivity and capacitance, outstanding mechanical flexibility and strength, great electrochemical stability, and good biocompatibility. Here, we report a simple and efficient method to synthesize a nanostructured conductive hydrogel to meet such criteria. Specifically, templated by a hyperconnective nanofibrous network from aramid hydrogels, the conducting polymer, polypyrrole, assembles conformally onto nanofibers through in-situ polymerization, generating continuous nanostructured conductive pathways. The resulting conductive hydrogel shows superior conductivity (72 S cm−1) and fracture strength (27.2 MPa). Supercapacitor electrodes utilizing this hydrogel exhibit high specific capacitance (240 F g−1) and cyclic stability. Furthermore, bioelectrodes of patterned hydrogels provide favorable bioelectronic interfaces, allowing high-quality electrophysiological recording and stimulation in physiological environments. These high-performance electrodes are readily scalable to applications of energy and power systems, healthcare and medical technologies, smart textiles, and so forth.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-11"},"PeriodicalIF":12.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00346-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrically tunable infrared optics enabled by flexible ion-permeable conducting polymer-cellulose paper 通过柔性离子渗透导电聚合物-纤维素纸实现电可调红外光学
IF 12.3 1区 材料科学
npj Flexible Electronics Pub Date : 2024-09-05 DOI: 10.1038/s41528-024-00339-7
Chaoyang Kuang, Shangzhi Chen, Mingna Liao, Aiman Rahmanudin, Debashree Banerjee, Jesper Edberg, Klas Tybrandt, Dan Zhao, Magnus P. Jonsson
{"title":"Electrically tunable infrared optics enabled by flexible ion-permeable conducting polymer-cellulose paper","authors":"Chaoyang Kuang, Shangzhi Chen, Mingna Liao, Aiman Rahmanudin, Debashree Banerjee, Jesper Edberg, Klas Tybrandt, Dan Zhao, Magnus P. Jonsson","doi":"10.1038/s41528-024-00339-7","DOIUrl":"10.1038/s41528-024-00339-7","url":null,"abstract":"Materials that provide dynamically tunable infrared (IR) response are important for many applications, including active camouflage and thermal management. However, current IR-tunable systems often exhibit limitations in mechanical properties or practicality of their tuning modalities, or require complex and costly fabrication methods. An additional challenge relates to providing compatibility between different spectral channels, such as allowing an object to be reversibly concealed in the IR without making it appear in the visible range. Here, we demonstrate that conducting polymer-cellulose papers, fabricated through a simple and cheap approach, can overcome such challenges. The papers exhibit IR properties that can be electrochemically tuned with large modulation (absolute emissivity modulation of 0.4) while maintaining largely constant response in the visible range. Owing to high ionic and electrical conductivity, the tuning of the top surface can be performed electrochemically from the other side of the paper even at tens of micrometer thicknesses, removing the need for overlaying electrode and electrolyte in the optical beam path. These features enabled a series of electrically tunable IR devices, where we focus on demonstrating dynamic radiative coolers, thermal camouflage, anti-counterfeiting tags, and grayscale IR displays. The conducting polymer-cellulose papers are sustainable, cheap, flexible and mechanically robust, providing a versatile materials platform for active and adaptive IR optoelectronic devices.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-11"},"PeriodicalIF":12.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00339-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conformal printed electronics on flexible substrates and inflatable catheters using lathe-based aerosol jet printing 使用车床气溶胶喷射打印技术在柔性基底和充气导管上进行共形打印电子器件
IF 12.3 1区 材料科学
npj Flexible Electronics Pub Date : 2024-08-30 DOI: 10.1038/s41528-024-00340-0
Hansel Alex Hobbie, James L. Doherty, Brittany N. Smith, Paolo Maccarini, Aaron D. Franklin
{"title":"Conformal printed electronics on flexible substrates and inflatable catheters using lathe-based aerosol jet printing","authors":"Hansel Alex Hobbie, James L. Doherty, Brittany N. Smith, Paolo Maccarini, Aaron D. Franklin","doi":"10.1038/s41528-024-00340-0","DOIUrl":"10.1038/s41528-024-00340-0","url":null,"abstract":"With the growth of additive manufacturing (AM), there has been increasing demand for fabricating conformal electronics that directly integrate with larger components to enable unique functionality. However, fabrication of conformal electronics is challenging because devices must merge with host substrates regardless of curvilinearity, topography, or substrate material. In this work, we employ aerosol jet (AJ) printing, an AM method for jet printing electronics using ink-based materials, and a custom-made lathe mechanism for mounting flexible substrates and 3D objects on a rotating axis. Using this method of lathe-based AJ printing, conformal electronics are printed around the circumference of rotational bodies with 3D curvilinear surfaces through cylindrical-coordinate motion. We characterize the diverse capabilities of lathe AJ (LAJ) printing and demonstrate flexible conformal electronics including multilayer carbon nanotube transistors. Lastly, a graphene sensor is conformally printed on an inflated catheter balloon for temperature and inflation monitoring, thus highlighting the versatilities of LAJ printing.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-12"},"PeriodicalIF":12.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00340-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信