Jiejun Zhang, Haitao Jiang, Weida Hong, Qing Meng, Zhongying Xue, Miao Zhang, Paul K. Chu, Yongfeng Mei, Ziao Tian, Zengfeng Di
{"title":"Ultra-flexible graphene-metal nanomembrane for wireless applications","authors":"Jiejun Zhang, Haitao Jiang, Weida Hong, Qing Meng, Zhongying Xue, Miao Zhang, Paul K. Chu, Yongfeng Mei, Ziao Tian, Zengfeng Di","doi":"10.1038/s41528-025-00402-x","DOIUrl":null,"url":null,"abstract":"<p>The advancement of wireless communication raises the demand for flexible, high-performance RF antennas for wearable electronics and flexible communication devices. Traditional approaches focused on reducing the thickness of metal films to enhance flexibility which faces limitations due to the skin effect. Herein, a hybrid graphene-Au nanomembrane is produced by one-step delamination processes to address the limitations of traditional metal films, including flexibility and RF functionality. The graphene-Au nanomembrane features a bond-free van der Waals interface, allowing the Au layer move freely with graphene. This structure mitigates the formation of cracks, enhancing the stretchability to over 14% strain and fatigue resistance. Moreover, this composite overcomes the limitations associated with skin depth, consequently enabling an ultra-thin graphene-Au antenna operating at 8.5 GHz for 5 G communications. We also demonstrate wireless image transmission and electromagnetic stealth. The results underscore the significant impact of the innovative design and materials on flexible wireless technology.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"4 1","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41528-025-00402-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement of wireless communication raises the demand for flexible, high-performance RF antennas for wearable electronics and flexible communication devices. Traditional approaches focused on reducing the thickness of metal films to enhance flexibility which faces limitations due to the skin effect. Herein, a hybrid graphene-Au nanomembrane is produced by one-step delamination processes to address the limitations of traditional metal films, including flexibility and RF functionality. The graphene-Au nanomembrane features a bond-free van der Waals interface, allowing the Au layer move freely with graphene. This structure mitigates the formation of cracks, enhancing the stretchability to over 14% strain and fatigue resistance. Moreover, this composite overcomes the limitations associated with skin depth, consequently enabling an ultra-thin graphene-Au antenna operating at 8.5 GHz for 5 G communications. We also demonstrate wireless image transmission and electromagnetic stealth. The results underscore the significant impact of the innovative design and materials on flexible wireless technology.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.