{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information","authors":"","doi":"10.1109/TRPMS.2024.3390313","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3390313","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 5","pages":"C2-C2"},"PeriodicalIF":4.4,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10517802","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140820219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors","authors":"","doi":"10.1109/TRPMS.2024.3390311","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3390311","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 5","pages":"C3-C3"},"PeriodicalIF":4.4,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10517794","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140820426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael O. Okebiorun;Cody Oberbeck;Cameron Waite;Samuel Clark;Zahraa Alomar;Dalton Miller;Ken Cornell;Jim Browning
{"title":"Autofluorescence-Guided Removal of Bacterial Biofilms From Tissues Using Cold Atmospheric Pressure Plasma (CAP)","authors":"Michael O. Okebiorun;Cody Oberbeck;Cameron Waite;Samuel Clark;Zahraa Alomar;Dalton Miller;Ken Cornell;Jim Browning","doi":"10.1109/TRPMS.2024.3370503","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3370503","url":null,"abstract":"Cold atmospheric pressure plasma (CAP) has the potential to completely remove biofilms from surfaces. The goal of this study is to employ the autofluorescence nature of bacterial biofilms to guide the removal of these biofilms using a CAP scalpel. Pseudomonas fluorescens biofilms, which produce a green fluorescence under 405-nm UV light, were grown on 12 chicken samples. The tissue model (chicken tissue) is placed on a motorized \u0000<inline-formula> <tex-math>$X$ </tex-math></inline-formula>\u0000–\u0000<inline-formula> <tex-math>$Y$ </tex-math></inline-formula>\u0000 stage with the plasma discharge device directly above the sample. Fluorescent-guided CAP treatment of biofilm regions was carried out using a 1.37-lpm Ar/H2O plasma device with \u0000<inline-formula> <tex-math>$39.5times 54,,{mathrm{ mm}}^{2}$ </tex-math></inline-formula>\u0000 dimension and a \u0000<inline-formula> <tex-math>$1times 0.6,,{mathrm{ mm}}^{2}$ </tex-math></inline-formula>\u0000 plasma discharge outlet with discharge speed was 1 mm/s and sample distance of 4 mm. The discharge voltage and current were 3.24 kV and 1.2 mA, respectively. Results based on analysis of the fluorescent images show that 97% biofilm removal; colony-forming unit analysis confirms that up to 99.98% of the bacteria are now absent from the tissue’s surface. This is the first instance of two new applications: 1) using CAP to remove bacterial biofilms from soft tissues and 2) employing CAP in an image-guided procedure.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 8","pages":"990-996"},"PeriodicalIF":4.6,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elena Rota Kops;Heba Alrakh;Cláudia Régio Brambilla;Jürgen Scheins;Hans Herzog;N. Jon Shah;Christoph Lerche
{"title":"Attenuation Correction of the Cerebellum in PET/MR Data","authors":"Elena Rota Kops;Heba Alrakh;Cláudia Régio Brambilla;Jürgen Scheins;Hans Herzog;N. Jon Shah;Christoph Lerche","doi":"10.1109/TRPMS.2024.3370252","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3370252","url":null,"abstract":"Attenuation correction (AC) is essential for achieving artefact-free PET/MR images. Many PET studies use the cerebellum as a reference region; therefore, AC methods should also be tested concerning their performance within the cerebellum. This study compares AC methods for PET/MR data, focusing on the cerebellum. Sixteen subjects underwent an [18F]FDG scan in a 3T-MR-BrainPET insert and a whole-head CT scan on the same day. The CT scan data were transformed into individual CT-based attenuation maps (AMCT), while the MR images were used to derive attenuation maps (AMs) using three methods: 1) Boston-MGH (AM textsubscript MGH); 2) London-UCL (AM textsubscript UCL); and 3) Juelich-Tx-template-based (AM textsubscript Tx-Juel). After reconstruction of the PET data with these four AMs, correlations, coefficients of determination, and relative errors (RErrs) between the PET-AM textsubscript CT and the other three PET-AMs were computed. The cerebellar RErr varied strongly between the three AC methods. The \u0000<inline-formula> <tex-math>${mathrm{ AM}}_{MGH}$ </tex-math></inline-formula>\u0000 method gave a RErr value of 3.85±5.03%, the AMUCL method gave 6.00±4.54%, and the AMTx-Juelgave 0.25±5.01%. Our results demonstrate that radiotracer uptake quantification in the cerebellum is sensitive to the applied PET AC. This dependency should be especially considered in neuroreceptor studies where the cerebellum is the reference region.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 6","pages":"618-631"},"PeriodicalIF":4.6,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Software System of a Dedicated Brain PET Scanner Using Dual-Ended Readout Detectors With High-DOI Resolution","authors":"Jiamin Liu;Ning Ren;Tianyi Zeng;Zhonghua Kuang;Qiyang Zhang;Xiaohui Wang;Zheng Liu;Hairong Zheng;Dong Liang;Yongfeng Yang;Zhanli Hu","doi":"10.1109/TRPMS.2024.3370308","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3370308","url":null,"abstract":"A dedicated brain positron emission tomography (PET) scanner can achieve higher-spatial resolution, sensitivity, and cost-effectiveness than whole-body PET scanners. In this study, we present the software system for a dedicated brain PET scanner, encompassing data acquisition, detector calibration, sinogram generation, imaging reconstruction, and data correction. The dedicated brain PET scanner features 224 depth-encoding detectors, each with a depth of interaction (DOI) resolution of approximately 2 mm. The electronics and data acquisition system of the scanner can be configured in different modes for detector calibration or image acquisition. Procedures for obtaining detector calibration parameters, including crystal look-up tables (LUTs), crystal depth-of-interaction LUTs, crystal energy, and timing calibration parameters, were developed. A novel virtual crystal-based sinogram generation method was developed to reduce sinogram size while preserving positioning accuracy. We also introduced a graphics processing unit-accelerated ordered subset expectation maximization imaging reconstruction method. The spatial resolution of the scanner was assessed using a point source at both the center and 1/4 axial field of view with varying radial offsets. We measured singles and prompt count rates at different activities using a monkey-sized phantom. Furthermore, we conducted scans on a 3-D Hoffman brain phantom and a rabbit, demonstrated the imaging capabilities of the PET scanner.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 6","pages":"655-663"},"PeriodicalIF":4.6,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel Cañizares;Santiago Jiménez-Serrano;Alejandro Lucero;Constantino Morera-Ballester;Enrique Muñoz;José M. Benlloch;Antonio J. González
{"title":"Simulation Study of Clinical PET Scanners With Different Geometries, Including TOF and DOI Capabilities","authors":"Gabriel Cañizares;Santiago Jiménez-Serrano;Alejandro Lucero;Constantino Morera-Ballester;Enrique Muñoz;José M. Benlloch;Antonio J. González","doi":"10.1109/TRPMS.2024.3365911","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3365911","url":null,"abstract":"Total body positron emission tomography (TB-PET) scanners provide high-quality images due to the large sensitivity. Our motivation is to design a TB-PET system with up to 70 cm axial coverage that mitigates the parallax error degradation by using a detector concept based on semi-monolithic LYSO crystals. Furthermore, this detector approach allows to simultaneously reach an accurate coincidence time resolution (CTR) to enhance the image quality by means of time-of-flight (TOF) reconstruction algorithms. We have simulated and compared two positron emission tomography (PET) prototypes with about 70 cm but a different number of detector rings (7 versus 5). The NEMA NU 2 2018 protocol has been implemented. By correcting the parallax error with the depth-of-interaction (DOI) information, the spatial resolution remains homogeneous and below 3 mm in the entire field of view (FOV), differently from designs based on pixelated crystals. The sensitivity reaches values of 58 and 115 cps/kBq, for the 5 and 7 rings configurations, respectively. The noise equivalent count rate (NECR) was found at 563 kcps/mL. This value is lower than other systems, most likely due to the requirement to process a larger number of channels to characterize the DOI. Percent contrasts obtained for two different phantoms are in general beyond 80% for the largest spheres, nearly 100% for the 7 rings configuration once TOF is applied during the reconstruction process. In conclusion, although the sensitivity and NECR results for the 5-rings configuration are lower compared to the 7-rings approach, its overall performance is enhanced by the addition of TOF and parallax error correction, improving that of conventional Whole Body PET scanners (axial length: 20–30 cm) in terms of image quality.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 6","pages":"690-699"},"PeriodicalIF":4.6,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436427","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stability of Radiomic Models and Strategies to Enhance Reproducibility","authors":"Ahmad Chaddad;Xiaojuan Liang","doi":"10.1109/TRPMS.2024.3365778","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3365778","url":null,"abstract":"Radiomics is a progressive field aiming to quantitatively assess the diversity within and between tumors using image analysis. It holds tremendous promise for tracking tumor treatment progress over time. This review summarizes recent advances in ensuring the stability, repeatability, and reproducibility of radiomic analyses. It covers various factors influencing the radiomics process and potential variables that can affect stability. The study also proposes strategies to enhance the reliability of both radiomic features and models. Additionally, we highlight the importance of stability in each radiomic phase to achieve the cut-off stable model. Moreover, we discuss the details of using the radiomics quality score (RQS) to evaluate radiomics research, guiding researchers in formulating reasonable research designs to promote more stable radiomic models.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 5","pages":"540-555"},"PeriodicalIF":4.4,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140820223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance Comparison of DOI-Encoding PET Detectors Based on 1.1-mm Pitch BGO Arrays With Different Reflectors","authors":"Junwei Du;Shixian Du","doi":"10.1109/TRPMS.2024.3361891","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3361891","url":null,"abstract":"Bismuth germanate (BGO)-based positron emission tomography (PET) detectors are potential candidates for low-dose imaging PET scanners, owing to the high stopping power and low background radiation of BGO. In this article, we compared the performance of two dual-ended readout PET detectors based on \u0000<inline-formula> <tex-math>$15times15$ </tex-math></inline-formula>\u0000 BGO arrays. Both arrays had the same 1.1 mm pitch but utilized different reflectors—barium sulfate (BaSO4) and enhanced specular reflector film (ESR)—for high-resolution PET applications. The detectors were constructed with Hamamatsu 13361–2050-08 silicon photomultiplier arrays. Each BGO element had dimensions of \u0000<inline-formula> <tex-math>$1.02times 1.02times20$ </tex-math></inline-formula>\u0000 mm3. The lateral surfaces of the BGO elements were unpolished (saw-cut), while the two ends were polished. Flood histograms showed that the detector based on the BGO array with BaSO4 reflector had much better crystal identification and depth-of-interaction (DOI) resolution. Specifically, the energy, DOI, and timing resolutions for the detector using the BGO array with BaSO4 reflector were 19.8 ± 1.5%, 4.13 ± 0.48 mm, and 2.80 ± 0.23 ns, respectively. In contrast, the values obtained using the BGO array with ESR reflector were 20.9 ± 2.1%, 7.69 ± 1.92 mm, and 2.93 ± 0.20 ns, respectively.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 3","pages":"257-262"},"PeriodicalIF":4.4,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140031649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Data Port","authors":"","doi":"10.1109/TRPMS.2024.3357949","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3357949","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 2","pages":"235-235"},"PeriodicalIF":4.4,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10419128","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Member Get-A-Member (MGM) Program","authors":"","doi":"10.1109/TRPMS.2024.3355538","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3355538","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 2","pages":"234-234"},"PeriodicalIF":4.4,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10419137","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}