4-D Cone-Beam CT Reconstruction via Diffusion Model and Motion Compensation

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Xianghong Wang;Zhengwei Ou;Peng Jin;Jiayi Xie;Ze Teng;Lei Xu;Jichen Du;Mingchao Ding;Yang Chen;Tianye Niu
{"title":"4-D Cone-Beam CT Reconstruction via Diffusion Model and Motion Compensation","authors":"Xianghong Wang;Zhengwei Ou;Peng Jin;Jiayi Xie;Ze Teng;Lei Xu;Jichen Du;Mingchao Ding;Yang Chen;Tianye Niu","doi":"10.1109/TRPMS.2024.3449155","DOIUrl":null,"url":null,"abstract":"4-Dcone-beam computed tomography (4-D CBCT) has recently been recognized as a proficient technique in mitigating motion artifacts attributed to respiratory organ movement. The primary challenges in 4-D CBCT reconstruction encompass the precision in projection grouping, the efficacy in reconstructing from sparsely sampled data, and the accuracy in deformation field estimation. To surmount these challenges, we propose an innovative approach that integrates meticulous respiratory curve extraction for projection grouping and utilizes a diffusion model network with motion compensation (MoCo) techniques targeted at significantly enhancing image quality. An object detection network is employed to ascertain the exact position of the diaphragm, which is then normalized to formulate the respiratory curve. Further, we employ a U-Net architecture-based diffusion model, which integrates attention mechanisms to enhance sparse-view reconstruction and reduce artifacts through Guided-Diffusion. Deviating from conventional optical flow methods, our approach introduces an unsupervised registration network for deformation vector field (DVF) in phase-enhanced images. This DVF is then utilized in a motion-compensated, ordered-subset, simultaneous algebraic reconstruction technique, culminating in the generation of 4-D CBCT images. The efficacy of this method has been substantiated through validation on both simulated and clinical datasets, with the results from comparative experiments indicating promising outcomes.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 2","pages":"191-201"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10644124","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10644124/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

4-Dcone-beam computed tomography (4-D CBCT) has recently been recognized as a proficient technique in mitigating motion artifacts attributed to respiratory organ movement. The primary challenges in 4-D CBCT reconstruction encompass the precision in projection grouping, the efficacy in reconstructing from sparsely sampled data, and the accuracy in deformation field estimation. To surmount these challenges, we propose an innovative approach that integrates meticulous respiratory curve extraction for projection grouping and utilizes a diffusion model network with motion compensation (MoCo) techniques targeted at significantly enhancing image quality. An object detection network is employed to ascertain the exact position of the diaphragm, which is then normalized to formulate the respiratory curve. Further, we employ a U-Net architecture-based diffusion model, which integrates attention mechanisms to enhance sparse-view reconstruction and reduce artifacts through Guided-Diffusion. Deviating from conventional optical flow methods, our approach introduces an unsupervised registration network for deformation vector field (DVF) in phase-enhanced images. This DVF is then utilized in a motion-compensated, ordered-subset, simultaneous algebraic reconstruction technique, culminating in the generation of 4-D CBCT images. The efficacy of this method has been substantiated through validation on both simulated and clinical datasets, with the results from comparative experiments indicating promising outcomes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信