IEEE Transactions on Radiation and Plasma Medical Sciences最新文献

筛选
英文 中文
IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information 电气和电子工程师学会辐射与等离子体医学科学杂志》(IEEE Transactions on Radiation and Plasma Medical Sciences)出版信息
IF 4.6
IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-09-06 DOI: 10.1109/TRPMS.2024.3449313
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information","authors":"","doi":"10.1109/TRPMS.2024.3449313","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3449313","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669124","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors 电气和电子工程师学会《辐射与等离子体医学科学杂志》作者须知
IF 4.6
IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-09-06 DOI: 10.1109/TRPMS.2024.3449311
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors","authors":"","doi":"10.1109/TRPMS.2024.3449311","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3449311","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669129","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Member Get-a-Member (MGM) Program 会员注册(MGM)计划
IF 4.6
IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-09-06 DOI: 10.1109/TRPMS.2024.3453689
{"title":"Member Get-a-Member (MGM) Program","authors":"","doi":"10.1109/TRPMS.2024.3453689","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3453689","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669127","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE DataPort IEEE 数据端口
IF 4.6
IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-09-06 DOI: 10.1109/TRPMS.2024.3453691
{"title":"IEEE DataPort","authors":"","doi":"10.1109/TRPMS.2024.3453691","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3453691","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669128","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Convolutional Backbone Comparison for Automated PET Image Quality Assessment. 用于 PET 图像质量自动评估的深度卷积骨干比较。
IF 4.6
IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-08-01 DOI: 10.1109/TRPMS.2024.3436697
Jessica B Hopson, Anthime Flaus, Colm J McGinnity, Radhouene Neji, Andrew J Reader, Alexander Hammers
{"title":"Deep Convolutional Backbone Comparison for Automated PET Image Quality Assessment.","authors":"Jessica B Hopson, Anthime Flaus, Colm J McGinnity, Radhouene Neji, Andrew J Reader, Alexander Hammers","doi":"10.1109/TRPMS.2024.3436697","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3436697","url":null,"abstract":"<p><p>Pretraining deep convolutional network mappings using natural images helps with medical imaging analysis tasks; this is important given the limited number of clinically-annotated medical images. Many two-dimensional pretrained backbone networks, however, are currently available. This work compared 18 different backbones from 5 architecture groups (pretrained on ImageNet) for the task of assessing [<sup>18</sup>F]FDG brain Positron Emission Transmission (PET) image quality (reconstructed at seven simulated doses), based on three clinical image quality metrics (global quality rating, pattern recognition, and diagnostic confidence). Using two-dimensional randomly sampled patches, up to eight patients (at three dose levels each) were used for training, with three separate patient datasets used for testing. Each backbone was trained five times with the same training and validation sets, and with six cross-folds. Training only the final fully connected layer (with ~6,000-20,000 trainable parameters) achieved a test mean-absolute-error of ~0.5 (which was within the intrinsic uncertainty of clinical scoring). To compare \"classical\" and over-parameterized regimes, the pretrained weights of the last 40% of the network layers were then unfrozen. The mean-absolute-error fell below 0.5 for 14 out of the 18 backbones assessed, including two that previously failed to train. Generally, backbones with residual units (e.g. DenseNets and ResNetV2s), were suited to this task, in terms of achieving the lowest mean-absolute-error at test time (~0.45 - 0.5). This proof-of-concept study shows that over-parameterization may also be important for automated PET image quality assessments.</p>","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616552/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142477477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors 电气和电子工程师学会《辐射与等离子体医学科学杂志》作者须知
IF 4.6
IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-07-03 DOI: 10.1109/TRPMS.2024.3405098
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors","authors":"","doi":"10.1109/TRPMS.2024.3405098","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3405098","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10584412","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Member Get-A-Member (MGM) Program 会员注册(MGM)计划
IF 4.6
IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-07-03 DOI: 10.1109/TRPMS.2024.3421769
{"title":"Member Get-A-Member (MGM) Program","authors":"","doi":"10.1109/TRPMS.2024.3421769","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3421769","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10584434","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information 电气和电子工程师学会辐射与等离子体医学科学杂志》(IEEE Transactions on Radiation and Plasma Medical Sciences)出版信息
IF 4.6
IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-07-03 DOI: 10.1109/TRPMS.2024.3405100
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information","authors":"","doi":"10.1109/TRPMS.2024.3405100","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3405100","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10584413","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-Learning Multimodality PET-CT Features via a Cascaded CNN-Transformer Network 通过级联 CNN 变换器网络共同学习多模态 PET-CT 特征
IF 4.6
IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-06-24 DOI: 10.1109/TRPMS.2024.3417901
Lei Bi;Xiaohang Fu;Qiufang Liu;Shaoli Song;David Dagan Feng;Michael Fulham;Jinman Kim
{"title":"Co-Learning Multimodality PET-CT Features via a Cascaded CNN-Transformer Network","authors":"Lei Bi;Xiaohang Fu;Qiufang Liu;Shaoli Song;David Dagan Feng;Michael Fulham;Jinman Kim","doi":"10.1109/TRPMS.2024.3417901","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3417901","url":null,"abstract":"<italic>Background:</i>\u0000 Automated segmentation of multimodality positron emission tomography—computed tomography (PET-CT) data is a major challenge in the development of computer-aided diagnosis systems (CADs). In this context, convolutional neural network (CNN)-based methods are considered as the state-of-the-art. These CNN-based methods, however, have difficulty in co-learning the complementary PET-CT image features and in learning the global context when focusing solely on local patterns. \u0000<italic>Methods:</i>\u0000 We propose a cascaded CNN-transformer network (CCNN-TN) tailored for PET-CT image segmentation. We employed a transformer network (TN) because of its ability to establish global context via self-attention and embedding image patches. We extended the TN definition by cascading multiple TNs and CNNs to learn the global and local contexts. We also introduced a hyper fusion branch that iteratively fuses the separately extracted complementary image features. We evaluated our approach, when compared to current state-of-the-art CNN methods, on three datasets: two nonsmall cell lung cancer (NSCLC) and one soft tissue sarcoma (STS). \u0000<italic>Results:</i>\u0000 Our CCNN-TN method achieved a dice similarity coefficient (DSC) score of 72.25% (NSCLC), 67.11% (NSCLC), and 66.36% (STS) for segmentation of tumors. Compared to other methods the DSC was higher for our CCNN-TN by 4.5%, 1.31%, and 3.44%. \u0000<italic>Conclusion:</i>\u0000 Our experimental results demonstrate that CCNN-TN, when compared to the existing methods, achieved more generalizable results across different datasets and has consistent performance across various image fusion strategies and network backbones.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward Sub-100 ps TOF-PET Systems Employing the FastIC ASIC With Analog SiPMs 采用带有模拟 SiPM 的 FastIC ASIC 实现亚 100 ps TOF-PET 系统
IF 4.6
IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-06-14 DOI: 10.1109/TRPMS.2024.3414578
A. Mariscal-Castilla;S. Gómez;R. Manera;J. M. Fernández-Tenllado;J. Mauricio;N. Kratochwil;J. Alozy;M. Piller;S. Portero;A. Sanuy;D. Guberman;J. J. Silva;E. Auffray;R. Ballabriga;G. Ariño-Estrada;M. Campbell;D. Gascón
{"title":"Toward Sub-100 ps TOF-PET Systems Employing the FastIC ASIC With Analog SiPMs","authors":"A. Mariscal-Castilla;S. Gómez;R. Manera;J. M. Fernández-Tenllado;J. Mauricio;N. Kratochwil;J. Alozy;M. Piller;S. Portero;A. Sanuy;D. Guberman;J. J. Silva;E. Auffray;R. Ballabriga;G. Ariño-Estrada;M. Campbell;D. Gascón","doi":"10.1109/TRPMS.2024.3414578","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3414578","url":null,"abstract":"Time of Flight positron emission tomography (TOF-PET) scanners demand electronics that are power-efficient, low-noise, cost-effective, and possess a large bandwidth. Recent developments have demonstrated sub-100 ps time resolution with elevated power consumption per channel, rendering this unfeasible to build a scanner. In this work, we evaluate the performance for the TOF-PET of the FastIC front-end using different scintillators and silicon photomultipliers (SiPMs). FastIC is an eight-channel application specific integrated circuit developed in CMOS 65 nm capable of measuring the energy and the arrival time of a detected pulse with 12 mW per channel. Using Hamamatsu SiPMs (S13360-3050PE) coupled to LSO:Ce:0.2%Ca crystals of \u0000<inline-formula> <tex-math>$2times 2times $ </tex-math></inline-formula>\u0000 3 mm\u0000<sup>3</sup>\u0000 and LYSO:Ce:0.2%Ca of \u0000<inline-formula> <tex-math>$3.13times 3.13times $ </tex-math></inline-formula>\u0000 20 mm\u0000<sup>3</sup>\u0000, we measured a coincidence time resolution (CTR) of (\u0000<inline-formula> <tex-math>$95~pm ~3$ </tex-math></inline-formula>\u0000) and \u0000<inline-formula> <tex-math>$156~pm ~4$ </tex-math></inline-formula>\u0000) ps full width half maximum (FWHM), respectively. With Fondazione Bruno Kessler NUV-HD LF2 M0 SiPMs coupled to the same crystals, we obtained a CTR of (\u0000<inline-formula> <tex-math>$76~pm ~2$ </tex-math></inline-formula>\u0000) and (\u0000<inline-formula> <tex-math>$127~pm ~3$ </tex-math></inline-formula>\u0000) ps FWHM. We employed FastIC with a TlCl pure Cherenkov emitter, demonstrating time resolutions comparable to those achieved with the high-power-consuming electronics. These findings shows that the FastIC represents a cost-effective alternative that can significantly enhance the time resolution of the current TOF-PET systems while maintaining low power consumption.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10557761","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信