{"title":"Non-Negative Matrix Factorization Using Partial Prior Knowledge for Radiation Dosimetry","authors":"Boby Lessard;Frédéric Marcotte;Arthur Lalonde;François Therriault-Proulx;Simon Lambert-Girard;Luc Beaulieu;Louis Archambault","doi":"10.1109/TRPMS.2024.3442773","DOIUrl":null,"url":null,"abstract":"Hyperspectral unmixing aims at decomposing a given signal into its spectral signatures and its associated fractional abundances. To improve the accuracy of this decomposition, algorithms have included different assumptions depending on the application. The goal of this study is to develop a new unmixing algorithm that can be applied for the calibration of multipoint scintillation dosimeters used in the field of radiation therapy. This new algorithm is based on a non-negative matrix factorization. It incorporates a partial prior knowledge on both the abundances and the endmembers of a given signal. It is shown herein that, following a precise calibration routine, it is possible to use partial prior information about the fractional abundances, as well as on the endmembers, in order to perform a simplified yet precise calibration of these dosimeters. Validation and characterization of this algorithm is made using both simulations and experiments. The experimental validation shows an improvement in accuracy compared to previous algorithms with a mean spectral angle distance (SAD) on the estimated endmembers of 0.0766, leading to an average error of <inline-formula> <tex-math>$(0.25 \\pm 0.73)$ </tex-math></inline-formula>% on dose measurements.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 2","pages":"247-258"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10638328/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperspectral unmixing aims at decomposing a given signal into its spectral signatures and its associated fractional abundances. To improve the accuracy of this decomposition, algorithms have included different assumptions depending on the application. The goal of this study is to develop a new unmixing algorithm that can be applied for the calibration of multipoint scintillation dosimeters used in the field of radiation therapy. This new algorithm is based on a non-negative matrix factorization. It incorporates a partial prior knowledge on both the abundances and the endmembers of a given signal. It is shown herein that, following a precise calibration routine, it is possible to use partial prior information about the fractional abundances, as well as on the endmembers, in order to perform a simplified yet precise calibration of these dosimeters. Validation and characterization of this algorithm is made using both simulations and experiments. The experimental validation shows an improvement in accuracy compared to previous algorithms with a mean spectral angle distance (SAD) on the estimated endmembers of 0.0766, leading to an average error of $(0.25 \pm 0.73)$ % on dose measurements.