Non-Negative Matrix Factorization Using Partial Prior Knowledge for Radiation Dosimetry

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Boby Lessard;Frédéric Marcotte;Arthur Lalonde;François Therriault-Proulx;Simon Lambert-Girard;Luc Beaulieu;Louis Archambault
{"title":"Non-Negative Matrix Factorization Using Partial Prior Knowledge for Radiation Dosimetry","authors":"Boby Lessard;Frédéric Marcotte;Arthur Lalonde;François Therriault-Proulx;Simon Lambert-Girard;Luc Beaulieu;Louis Archambault","doi":"10.1109/TRPMS.2024.3442773","DOIUrl":null,"url":null,"abstract":"Hyperspectral unmixing aims at decomposing a given signal into its spectral signatures and its associated fractional abundances. To improve the accuracy of this decomposition, algorithms have included different assumptions depending on the application. The goal of this study is to develop a new unmixing algorithm that can be applied for the calibration of multipoint scintillation dosimeters used in the field of radiation therapy. This new algorithm is based on a non-negative matrix factorization. It incorporates a partial prior knowledge on both the abundances and the endmembers of a given signal. It is shown herein that, following a precise calibration routine, it is possible to use partial prior information about the fractional abundances, as well as on the endmembers, in order to perform a simplified yet precise calibration of these dosimeters. Validation and characterization of this algorithm is made using both simulations and experiments. The experimental validation shows an improvement in accuracy compared to previous algorithms with a mean spectral angle distance (SAD) on the estimated endmembers of 0.0766, leading to an average error of <inline-formula> <tex-math>$(0.25 \\pm 0.73)$ </tex-math></inline-formula>% on dose measurements.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 2","pages":"247-258"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10638328/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectral unmixing aims at decomposing a given signal into its spectral signatures and its associated fractional abundances. To improve the accuracy of this decomposition, algorithms have included different assumptions depending on the application. The goal of this study is to develop a new unmixing algorithm that can be applied for the calibration of multipoint scintillation dosimeters used in the field of radiation therapy. This new algorithm is based on a non-negative matrix factorization. It incorporates a partial prior knowledge on both the abundances and the endmembers of a given signal. It is shown herein that, following a precise calibration routine, it is possible to use partial prior information about the fractional abundances, as well as on the endmembers, in order to perform a simplified yet precise calibration of these dosimeters. Validation and characterization of this algorithm is made using both simulations and experiments. The experimental validation shows an improvement in accuracy compared to previous algorithms with a mean spectral angle distance (SAD) on the estimated endmembers of 0.0766, leading to an average error of $(0.25 \pm 0.73)$ % on dose measurements.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信