基于可变可逆网络的脑PET衰减校正合成CT生成

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Yu Guan;Bohui Shen;Shirui Jiang;Xinchong Shi;Xiangsong Zhang;Bingxuan Li;Qiegen Liu
{"title":"基于可变可逆网络的脑PET衰减校正合成CT生成","authors":"Yu Guan;Bohui Shen;Shirui Jiang;Xinchong Shi;Xiangsong Zhang;Bingxuan Li;Qiegen Liu","doi":"10.1109/TRPMS.2024.3453009","DOIUrl":null,"url":null,"abstract":"Attenuation correction (AC) is essential for the generation of artifact-free and quantitatively accurate positron emission tomography (PET) images. Nowadays, deep-learning-based methods have been extensively applied to PET AC tasks, yielding promising results. Therefore, this article develops an innovative approach to generate continuously valued CT images from nonattenuation corrected PET images for AC on brain PET imaging. Specifically, an invertible neural network combined with the variable augmentation strategy that can achieve the bidirectional inference processes is proposed for synthetic CT generation. On the one hand, invertible architecture ensures a bijective mapping between the PET and synthetic CT image spaces, which can potentially improve the robustness of the prediction and provide a way to validate the synthetic CT by checking the consistency of the inverse mapping. On the other hand, the variable augmentation strategy enriches the training process and leverages the intrinsic data properties more effectively. Therefore, the combination provides for superior performance in PET AC by preserving information throughout the network and by better handling of the data variability inherent PET AC. To evaluate the performance of the proposed algorithm, we conducted a comprehensive study on a total of 1480 2-D slices from 37 whole-body 18F-FDG clinical patients using comparative algorithms (such as cycle-generative adversarial network and Pix2pix). Perceptual analysis and quantitative evaluations illustrate that the invertible network for PET AC outperforms other existing AC models, which demonstrates the feasibility of achieving brain PET AC without additional anatomical information.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 3","pages":"325-336"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10666843","citationCount":"0","resultStr":"{\"title\":\"Synthetic CT Generation via Variant Invertible Network for Brain PET Attenuation Correction\",\"authors\":\"Yu Guan;Bohui Shen;Shirui Jiang;Xinchong Shi;Xiangsong Zhang;Bingxuan Li;Qiegen Liu\",\"doi\":\"10.1109/TRPMS.2024.3453009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attenuation correction (AC) is essential for the generation of artifact-free and quantitatively accurate positron emission tomography (PET) images. Nowadays, deep-learning-based methods have been extensively applied to PET AC tasks, yielding promising results. Therefore, this article develops an innovative approach to generate continuously valued CT images from nonattenuation corrected PET images for AC on brain PET imaging. Specifically, an invertible neural network combined with the variable augmentation strategy that can achieve the bidirectional inference processes is proposed for synthetic CT generation. On the one hand, invertible architecture ensures a bijective mapping between the PET and synthetic CT image spaces, which can potentially improve the robustness of the prediction and provide a way to validate the synthetic CT by checking the consistency of the inverse mapping. On the other hand, the variable augmentation strategy enriches the training process and leverages the intrinsic data properties more effectively. Therefore, the combination provides for superior performance in PET AC by preserving information throughout the network and by better handling of the data variability inherent PET AC. To evaluate the performance of the proposed algorithm, we conducted a comprehensive study on a total of 1480 2-D slices from 37 whole-body 18F-FDG clinical patients using comparative algorithms (such as cycle-generative adversarial network and Pix2pix). Perceptual analysis and quantitative evaluations illustrate that the invertible network for PET AC outperforms other existing AC models, which demonstrates the feasibility of achieving brain PET AC without additional anatomical information.\",\"PeriodicalId\":46807,\"journal\":{\"name\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"volume\":\"9 3\",\"pages\":\"325-336\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10666843\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10666843/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10666843/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

衰减校正(AC)对于生成无伪影和定量准确的正电子发射断层扫描(PET)图像至关重要。目前,基于深度学习的方法已广泛应用于PET AC任务中,并取得了良好的效果。因此,本文开发了一种创新的方法,从非衰减校正的PET图像中生成连续值的CT图像,用于脑PET成像。具体而言,提出了一种结合变量增强策略的可逆神经网络,实现了合成CT的双向推理过程。一方面,可逆结构确保了PET和合成CT图像空间之间的双射映射,这可以潜在地提高预测的鲁棒性,并提供了一种通过检查逆映射的一致性来验证合成CT的方法。另一方面,变量增广策略丰富了训练过程,更有效地利用了数据的内在属性。因此,通过保留整个网络中的信息和更好地处理PET AC固有的数据变异性,该组合在PET AC中提供了优越的性能。为了评估所提出算法的性能,我们使用比较算法(如循环生成对抗网络和Pix2pix)对37名全身18F-FDG临床患者的1480张二维切片进行了全面研究。感知分析和定量评估表明,PET交流的可逆网络优于其他现有的交流模型,这表明在不需要额外解剖信息的情况下实现脑PET交流的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthetic CT Generation via Variant Invertible Network for Brain PET Attenuation Correction
Attenuation correction (AC) is essential for the generation of artifact-free and quantitatively accurate positron emission tomography (PET) images. Nowadays, deep-learning-based methods have been extensively applied to PET AC tasks, yielding promising results. Therefore, this article develops an innovative approach to generate continuously valued CT images from nonattenuation corrected PET images for AC on brain PET imaging. Specifically, an invertible neural network combined with the variable augmentation strategy that can achieve the bidirectional inference processes is proposed for synthetic CT generation. On the one hand, invertible architecture ensures a bijective mapping between the PET and synthetic CT image spaces, which can potentially improve the robustness of the prediction and provide a way to validate the synthetic CT by checking the consistency of the inverse mapping. On the other hand, the variable augmentation strategy enriches the training process and leverages the intrinsic data properties more effectively. Therefore, the combination provides for superior performance in PET AC by preserving information throughout the network and by better handling of the data variability inherent PET AC. To evaluate the performance of the proposed algorithm, we conducted a comprehensive study on a total of 1480 2-D slices from 37 whole-body 18F-FDG clinical patients using comparative algorithms (such as cycle-generative adversarial network and Pix2pix). Perceptual analysis and quantitative evaluations illustrate that the invertible network for PET AC outperforms other existing AC models, which demonstrates the feasibility of achieving brain PET AC without additional anatomical information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信