任何其他名称:寻找正确的等离子体命名法

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Caroline Corcoran;Rachel Bennett;Vandana Miller;Fred Krebs;Will Dampier
{"title":"任何其他名称:寻找正确的等离子体命名法","authors":"Caroline Corcoran;Rachel Bennett;Vandana Miller;Fred Krebs;Will Dampier","doi":"10.1109/TRPMS.2024.3447551","DOIUrl":null,"url":null,"abstract":"Nonthermal plasma, cold plasma, and atmospheric-pressure plasma are few terms used to describe the plasma used in plasma medicine research. The resulting ambiguity hampers literature searches, confuses discussion, and complicates collaborations. To assess the full breadth of this problem, we designed a natural language processing (NLP) model that surveyed approximately 15 000 papers in response to the query “plasma medicine” indexed in PubMed between 2020 and 2022. Our NLP was constructed and executed using the Hugging Face transformers API and PubMed BERT pretrained model. We used this model to determine the prevalence and to assess the utility of each term for searching literature relevant to plasma medicine. The effectiveness of each term was measured by precision, the ability to discriminate relevant and irrelevant literature; and recall, the ability to retrieve relevant literature. Each term was given a combined effectiveness score of 0-1 (<inline-formula> <tex-math>$1{=}$ </tex-math></inline-formula> ideal effectiveness) accounting for precision, recall, sample size, and model confidence. Our model showed that of the 12 commonly used terms analyzed, none received a combined effectiveness score over 0.025. We concluded that there is no universal term for “plasma” that provides a satisfactory representation of literature. These results highlight the need for standardization of nomenclature in plasma medicine.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 3","pages":"388-394"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"By Any Other Name: Searching for the Right Plasma Nomenclature\",\"authors\":\"Caroline Corcoran;Rachel Bennett;Vandana Miller;Fred Krebs;Will Dampier\",\"doi\":\"10.1109/TRPMS.2024.3447551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonthermal plasma, cold plasma, and atmospheric-pressure plasma are few terms used to describe the plasma used in plasma medicine research. The resulting ambiguity hampers literature searches, confuses discussion, and complicates collaborations. To assess the full breadth of this problem, we designed a natural language processing (NLP) model that surveyed approximately 15 000 papers in response to the query “plasma medicine” indexed in PubMed between 2020 and 2022. Our NLP was constructed and executed using the Hugging Face transformers API and PubMed BERT pretrained model. We used this model to determine the prevalence and to assess the utility of each term for searching literature relevant to plasma medicine. The effectiveness of each term was measured by precision, the ability to discriminate relevant and irrelevant literature; and recall, the ability to retrieve relevant literature. Each term was given a combined effectiveness score of 0-1 (<inline-formula> <tex-math>$1{=}$ </tex-math></inline-formula> ideal effectiveness) accounting for precision, recall, sample size, and model confidence. Our model showed that of the 12 commonly used terms analyzed, none received a combined effectiveness score over 0.025. We concluded that there is no universal term for “plasma” that provides a satisfactory representation of literature. These results highlight the need for standardization of nomenclature in plasma medicine.\",\"PeriodicalId\":46807,\"journal\":{\"name\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"volume\":\"9 3\",\"pages\":\"388-394\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10643224/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10643224/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

非热等离子体、冷等离子体和常压等离子体是等离子医学研究中用于描述等离子体的几个术语。由此产生的模糊性阻碍了文献检索,混淆了讨论,并使合作复杂化。为了评估这个问题的广度,我们设计了一个自然语言处理(NLP)模型,该模型调查了大约15000篇论文,以回应2020年至2022年间PubMed索引的“血浆医学”查询。我们的NLP是使用拥抱脸转换器API和PubMed BERT预训练模型构建和执行的。我们使用这个模型来确定患病率,并评估每个术语在血浆医学相关文献检索中的效用。每个术语的有效性是通过精确度来衡量的,即区分相关和不相关文献的能力;回忆,检索相关文献的能力。考虑到准确率、召回率、样本量和模型置信度,每个术语的综合有效性评分为0-1($1{=}$理想有效性)。我们的模型显示,在分析的12个常用术语中,没有一个的综合有效性得分超过0.025。我们得出的结论是,没有一个通用的术语来描述“等离子体”,它提供了一个令人满意的文献代表。这些结果强调了血浆医学术语标准化的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
By Any Other Name: Searching for the Right Plasma Nomenclature
Nonthermal plasma, cold plasma, and atmospheric-pressure plasma are few terms used to describe the plasma used in plasma medicine research. The resulting ambiguity hampers literature searches, confuses discussion, and complicates collaborations. To assess the full breadth of this problem, we designed a natural language processing (NLP) model that surveyed approximately 15 000 papers in response to the query “plasma medicine” indexed in PubMed between 2020 and 2022. Our NLP was constructed and executed using the Hugging Face transformers API and PubMed BERT pretrained model. We used this model to determine the prevalence and to assess the utility of each term for searching literature relevant to plasma medicine. The effectiveness of each term was measured by precision, the ability to discriminate relevant and irrelevant literature; and recall, the ability to retrieve relevant literature. Each term was given a combined effectiveness score of 0-1 ( $1{=}$ ideal effectiveness) accounting for precision, recall, sample size, and model confidence. Our model showed that of the 12 commonly used terms analyzed, none received a combined effectiveness score over 0.025. We concluded that there is no universal term for “plasma” that provides a satisfactory representation of literature. These results highlight the need for standardization of nomenclature in plasma medicine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信